How does ecological risk relate to commercial risk?

Welcome Sir Partha Dasgupta FRS

Investment and supply chain perspectives on the causes of and responses to nature loss

Chair: Dr Sally Uren OBE Dr Helen Crowley Snorre Gjerde

	End of life	Use phase	TIER 0 Stores, warehouses, offices	TIER 1 Assembly	TIER 2 Manufacturing	TIER 3 Raw material processing	TIER 4 Raw material production	TOTAL
			•		•	٠		8% €48M
	10 T	2 249 T	3 947 T	989 T	1 744 T	1 918 T	6 347 T	17 204 T
GHGs	•							37% €206M
	8 814 TCO ₂	229 711 TCO ₂	477 398 TCO ₂	154 548 TCO ₂	243 006 TCO ₂	265 671 TCO ₂	1 002 842 TCO ₂	2 381 991 TCO ₂
			•	•	•	•		31% €172M
	0 Ha	194 Ha	3 081 Ha	3 287 Ha	3 242 Ha	1 722 Ha	288 146 Ha	299 673 Ha
WASTE	٠	•	٠			•	•	6% €35M
	3 807 T	48 415 T	122 578 T	156 838 T	243 259 T	79 051 T	37 932 T	691 879 T
				•		٠		6% €35M
	4 dam ³	3 530 dam ³	16 374 dam ³	5 591 dam ³	6 688 dam ³	5 127 dam ³	18 617 dam ³	55 977 dam ³
		•		•	•			12% €67M
	0 T	141 T	563 T	89 T	88 T	324 T	3 085 T	4 290 T
TOTAL IN MILLIONS	0,2% €1	7% €39	14% €77	5% €28	8% €43	9% €53	57% €322	100% €562M

"We cannot solve problems by using the same kind of thinking we used when we created them" 8

Albert Einstein

THANK YOU

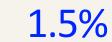
Photo credits & thanks: Julie Larsen Maher, WCS David Lees, Stuart Anstee, S+A Howard Rosenbaum, WCS Beth Wald

04.10.2024

Nature risk – an investor viewpoint

The Royal Society's seminar on ecological and commercial risk

Snorre Gjerde – Lead Investment Stewardship Manager Norges Bank Investment Management


Equities

One of the world's largest single owners of listed companies.

countries companies

T Text

of listed companies in the world

of listed companies in Europe

2.6%

Building standards to promote well-functioning markets

Clear positions and expectations

Norges Bank Investment Management

Corporate sustainability reporting

Position paper

Norges Bank Investment Management position

The board should ensure that company reporting reflects all material sustainability risks and opportunities. Disclosures should cover all financially relevant sustainability matters and account for any significant environmental and social consequences of company operations.

The board should provide shareholders with quantitative sustainability information on a regular basis. Sustainability disclosures should include includers of exposure, management and performance, and be reported at least annually, including in financial statements as appropriate.

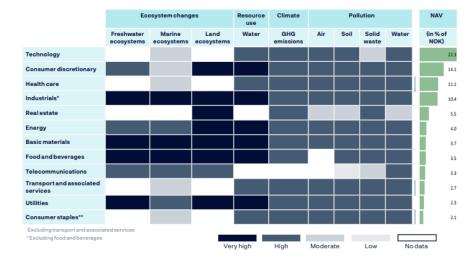
The board should base corporate sustainability reporting on established international frameworks and standards. The board should as a starting point consider the industry specific SASB¹ metrics and base broader disclosures on the GNP.

Sambooking Constants
 Status Supering Initiality

Norges Bank Investment Management

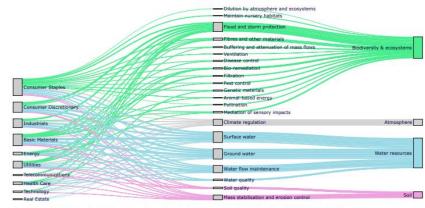
Biodiversity and ecosystems Expectations of companies

Frameworks & standards


Taskforce on Nature-related Financial Disclosures

Consultation on the GRI Biodiversity Standard Exposure Draft

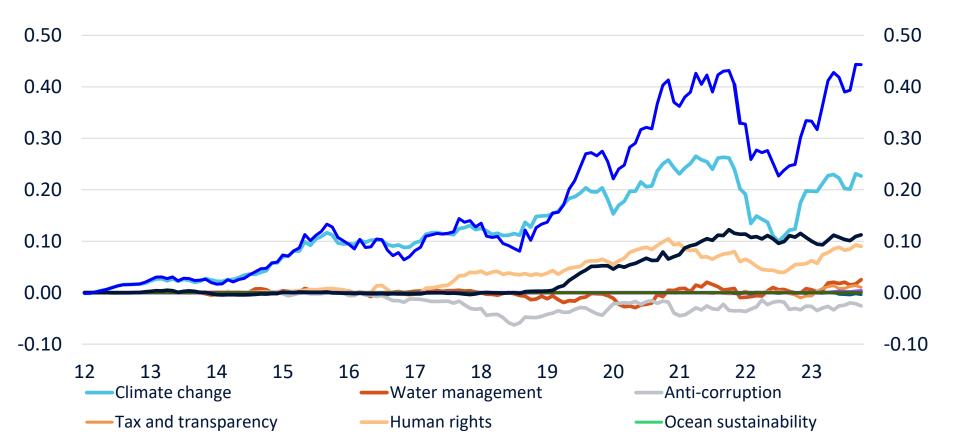
Letter to the Global Sustainability Standards Board, 28 February 2023.


Analysing portfolio impacts and dependencies on nature

Sector impacts on ecosystems

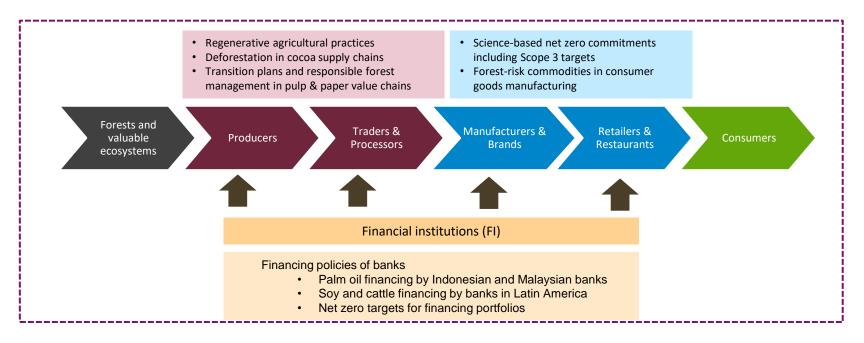
Source: ENCORE and internal calculations

Note: Heatmap illustrates the maximum materiality rating in each sector. Sectors sorted by Net Asset Value in NOK for NBIM's equity portfolio as per 31.12.2023.


Sector dependencies on ecosystems

Source: ENCORE and internal calculations.

Note: Chart only includes processes that depend moderately, highly or very highly on ecosystem services. The thickness of the lines represents the number of processes


Portfolio adaptations to ensure resilience

Return impact of risk-based divestments on the equity reference portfolio. Measured in dollars. Percentage points.

Engaging across industries and value chains

Focal topics in proactive dialogues on deforestation risk

09.10.2024

Metrics for business use: What is and is not possible?

Neil Burgess, Chief Scientist

Metrics – what are we trying to measure?

Metrics : What changes do we envisage in Business through use of metrics

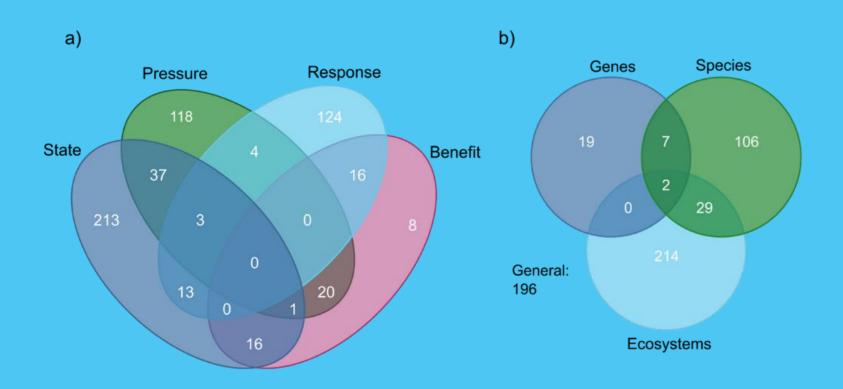
Faster, Better, More accurate, Understanding of Biodiversity Risk

Enhanced,

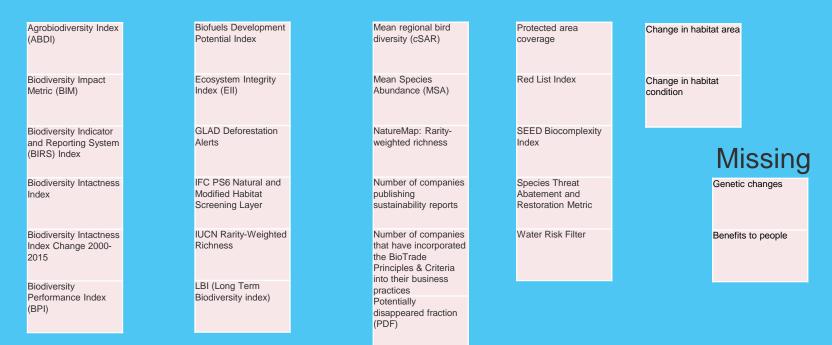
More accurate,

And more insightful,

Understanding of Biodiversity Dependency


Accountability, Transparency, Ambition, Through clear target setting

Responding, Action, Reporting, Using established guidance (TNFD, SBTN, EUDR ...)


Our Terrestrial Metrics "Database"

1		~	~	-		~				ix.	-			<u> </u>		~	15		
Metric	Responsible Institution	(e.g. 1985- 2019)	Frequenc y of update (e.g. annually, monthly)	Temporal (T) Data	Pressure (P), State(S), Response (R), Benefit (B)	Genes (G), Species (S), Ecosyste ms, General	Top-down (T), Bottom-up (B), Neither (0), Unknown (U) [State metrics only]	Significance (S), Intactness (I), Neither (0), Unknown (U) [State metrics only]	Business Use	Global indicator can be disaggre gated for national use (Y/N)	ed to form global indicator (Y/N)	ogy Available (Y/N)	SDG indicator (Y/N)	CBD GBF indicator (headline, component, complementary)	Indicator used to measure other MEAs or processes (e.g. Ramsar, IPBES, CMS)	Disaggre gated by sex or gender- specific	Citation	Resource 1	Resourc
	•	•	•		-	•	-	•	•	•	•	-	•	•	-	-		-	
Biodiversity Hotspots Revisited		2016		S	s	S,E	т	S	N					Ν			Michael Hoffman, Kellee Koenig, Gill Bunting, Jennifer Costanza, & Williams, Kristen J. (2016)	https://zenodo.org/re cord/3261807#.YlffV yjMKUk	
	Cambridge Institute for	-	-	S	s	S,E	т	S,I	Y	N	Ν	N	Ν	Ν	N	N	University of Cambridge	https://www.cisl.ca	https://w
Biodiversity Indicator and Reporting System (BIRS) Index	IUCN	-	-	s	s	GENERAL	. В	S,I	Y					Ν			IUCN (2014). Biodiversity	https://portals.iucn.or	rg/library/r
Biodiversity Intactness Index	Museum (UK)	2000-2014	1900- 2010 (global) 2000- 2014	т	S	s	т	I	Y	Y	Ν	Y	Ν	Complementary	IPBES	N	Newbold, T. et al. (2016) 'Has land use pushed terrestrial biodiversity beyond the planetary boundary? A Newbold, 1., Hudson,	https://www.science/ direct.com/science/a rticle/pii/S006525041 7300284	https://w indicator ndicators ersity- intactnes
Change 2000-2015	UNEP-WCMC, University College London, Natural History Museum, Imperial College	2000 - 2015	v1	Т	s	S,E	т	I	Y					Ν			Newbold, T., Hudson, L.N., Arnell, A.P., Contu, S., Palma, A.D., Ferrier, S., Hill, S.L.L. Hoskins, A.J.		
	Natural England & UK	-	-	S	s	S,E	в	I	Y					Ν			Natural England and oth	https://nepubprod.apj	phttp://ne
	Center for Sustainable	-	-	s	s	S,E	т	I	Y					Ν			McElroy, M.W. and A. V	https://www.research	igate.net/p
Biofuels Development Potential Index		2019		S	Ρ	GENERAL			Y?					Ν			Oakleat, James; M. Kennedy, Christina; Baruch-Mordo, Sharon; Gerber, James; C. West Paul: Johnson Xia, J. et al. Spatto-	https://doi.org/10. 6084/m9.figshare.c. 4249532.v2	
Biomass Carbon																	Xia, J. et al. Spatio- Temporal Patterns and		

How many Terrestrial Metrics = 573

How many are for business use? = 23+

Key messages: Scientists can help businesses to understand what metrics are best suited to measuring and managing their nature related risks, the reliability of the data that underpins these metrics, and where new technologies can help address current measurement challenges.

Towards a Handful of Terrestrial Metrics for Business and Country use = 16?

Edge of Existenc		Genes	Species	Ecosystems	Red List of	
Red List	9	EDGE	STAR	Extent of natural	Biodivers	Ecologic
Index	ificance)		RLI	RLE	ity Interstance	al
Living Planet	•	-	LPI	BII/EII	Intactnes s Index	Integrity Index
Index	ctness)			MSA/ PDF/cSAR	Species	у
Species Threat		-	STAR _T	HFI	Abundan ce	Disanne countrysi
Abatemer Restoratio		-	$STAR_{TandR}$	PA coverage	Human	de Species
(metric			GSSI		Footprint Index	Area
Status of	efits	-	-	Forest Carbon Flu		Relation ship

What next for Metrics?

INCREASIN G IMPORTAN CE OF NATIONAL METRICS, WIDER UPTAKE OF BUSINESS METRICS,

AGREEING A MINIMUM SET OF METRICS FOR GOVERNME NT AND BUSINESS AUTOMATIO N OF METRIC CALCULATIO N THROUGH USE OF TECHNOLOG Y,

SOLVING CHALLENGE OF SUSTAINABL E FUNDING FOR METRIC PRODUCTIO N AND DISSEMINAT

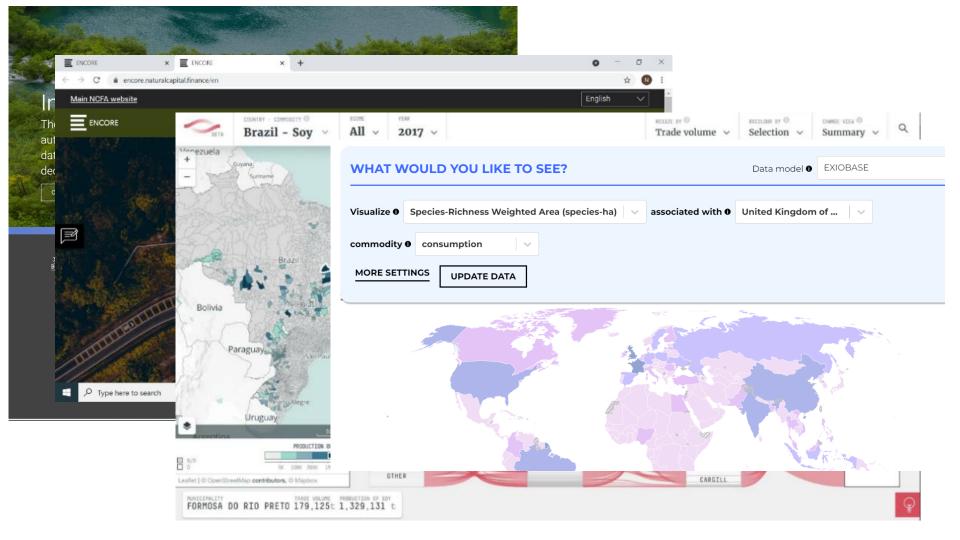
Making metrics available : Review of all global naturerelated online systems

Unique IC		Typology	Platform/Portal/Real time analysis/Tool	State, Pressure, Response, Benefits (S,P,R,B), multiple (M), generic (G)	Main stated users (G=government, B=business, C=Civil society / NGO, G=generic)	Keywords / theme	Intended users	URL	URL Simple
1	Access to Nutrition Foundation (ATNF)	Other - initiative/orga						https://accesstonutrition.org/about-us/	accesstonutrition.org/about-u
2	Agroideal		Platform			Trade; Sustainab		https://agroideal.org/en/	agroideal.org/en/
3	AGWater Challenge		Platform					https://www.ceres.org/sites/default/files/	
4	Al for Earth		Portal					https://www.microsoft.com/en-us/ai/ai-fo	
5	Allen Coral Atlas	Data source				Earth observation		https://allencoralatlas.org/	allencoralatlas.org/
6	Alliance for Zero Extinction (AZE)	Other - initiative/orga						https://zeroextinction.org/the-alliance/par	
7	Amphibian Species of the World		Platform			Species observat		http://research.amnh.org/vz/herpetology/a	
8	AmphibiaWeb		Platform			Species observat		https://amphibiaweb.org/	amphibiaweb.org/
9	AquaMaps		Platform					https://www.aquamaps.org/main/home.ph	
10	ArcGIS Living Atlas of the World		Platform			Earth observation		https://livingatlas.arcgis.com/en/	livingatlas.arcgis.com/en/
11	Arctos Data Portal		Portal	w				https://arctosdb.org	arctosdb.org
12	ARIES (Artificial Intelligence for Ecosystem Services)	Flexible analysis platf						http://aries.integratedmodelling.org/	aries.integratedmodelling.org
13	Association for Supply Chain Management		Platform			Sustainable busin		http://www.apics.org/about/overview	apics.org/about/overview
14	Atlas of Economic Complexity		Data visualization of glob	al trade flow	s (export and import)C	Trade		http://atlas.cid.harvard.edu	atlas.cid.harvard.edu
15	B Impact Assessment	Other - initiative/orga						https://bimpactassessment.net/node/464	bimpactassessment.net/node
16	Benefit Transfer Toolkit		Portal or tool					https://my.usgs.gov/benefit-transfer/	my.usgs.gov/benefit-transfer/
17	Biodiversity Heritage Library		Portal			Species observat		https://www.biodiversitylibrary.org/	biodiversitylibrary.org/
18	Biodiversity Indicator Partnership Dashboard	Decision-support tool	Platform				Governments; Industry; NGO:	https://www.bipindicators.net/	bipindicators.net/
19	Biodiversity Literature Repository	Other - repository	Portal					http://biolitrepo.org/	biolitrepo.org/
20	Biodiversity Monitoring Transect Analysis (BIOTA) in Africa							https://www.biota-africa.org/reg_disciplin	
21	Biological Collection Access Service	Data source	Portal			Species observat	ions / taxonomy	https://www.biocase.org/index.shtml	biocase.org/index.shtml
22	BISE - Biodiversity Information System for Europe		Portal			Species observat	Governments	https://biodiversity.europa.eu/	biodiversity.europa.eu/
23	Bonsucro	Other - initiative/orga	Platform			Trade; Sustainab		https://www.bonsucro.com/what-is-bonsu	
24	Business for Water Stewardship network	Other - initiative/orga	Platform			Sustainable busin		https://businessforwater.org/about	businessforwater.org/about
25	Carbon Trust	Other - initiative/orga	Portal			Sustainable busin	less	https://www.carbontrust.com/about-us/	carbontrust.com/about-us/
26	CASEarth (Big Earth Data Platform)		Platform			Earth observation	1	http://www.casearth.com/	casearth.com/
77	2024 Master List Climate tealbox Teal		ni			· · · · · · · · · · · · · · · · · · ·	C	has	

Initial Results: At least 1500 nature related online systems

TRADE, DEVELOPMENT & Explore catalogue

Glossary Terr


Terms and conditions

Official GCRF TRADE Hub Site

Trade Tools Navigator

Abou

The GCRF Trade, Development and the Environment Hub (TRADE Hub) has created a catalogue of existing initiatives, measures, models, data providers, platforms, portals, and round table certifications. The Trade Tools Navigator aims to add value to existing work and synthesise what tools are currently available which are relevant to trade, impacts of trade, and commodity supply chains.

What's next for naturerelated online systems?

- Clarity of users and their needs
- Automation of all calculations
- Re-usable technology modules
- Aligning functionality to user-needs
- Sustainable funding models

Natural History Museum

Data availability and use

Andy Purvis

andy.purvis@nhm.ac.uk

© The Trustees of the Natural History Museum, London

About the Natural History Museum

The Natural History Museum is home to one of the world's most important collections of over **80m objects from the natural world**, and the data held within these specimens is vital to informing solutions to the planetary emergency.

More than 350 scientists and 170 PhD students work tirelessly to put this data to use, from publishing hundreds of papers a year that contribute towards global scientific debate, to creating a pioneering index to measure biodiversity change, to understanding how to sustainably source the minerals and rare earths needed to transition away from fossil fuels.

We also welcome **millions of people** through our doors and engage millions more online, giving us a **unique platform** to educate, inspire and mobilise a global community to positive action.

The Museum's mission is to create advocates for the planet, and we're looking for like-minded partners to join us on this vital mission.

Why should I care about biodiversity loss?

Why should I care about biodiversity loss?

Global risks ranked by severity over short term (2 years) and long term (10 years)

Risk categories

Economic

Environmental

Geopolitical

Societal

Technological

2 ye	2 years								
1 st	Misinformation and disinformation								
2 nd	Extreme weather events								
3 rd	Societal polarization								
4 th	Cyber insecurity								
5^{th}	Interstate armed conflict								
6 th	Lack of economic opportunity								
7 th	Inflation								
8 th	Involuntary migration								
9 th	Economic downturn								
10 th	Pollution								

10 years

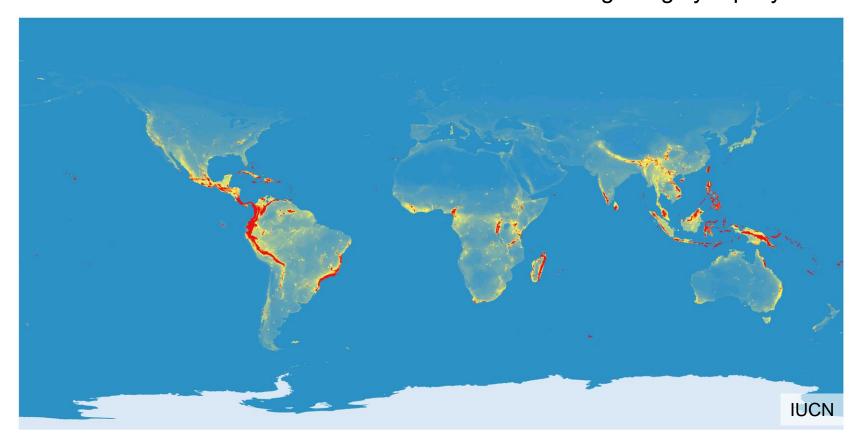
1 st	Extreme weather events
2 nd	Critical change to Earth systems
3 rd	Biodiversity loss and ecosystem collapse
4 th	Natural resource shortages
5 th	Misinformation and disinformation
6 th	Adverse outcomes of AI technologies
7 th	Involuntary migration
8 th	Cyber insecurity
9 th	Societal polarization
0 th	Pollution

Source

World Economic Forum Global Risks Perception Survey 2023-2024.

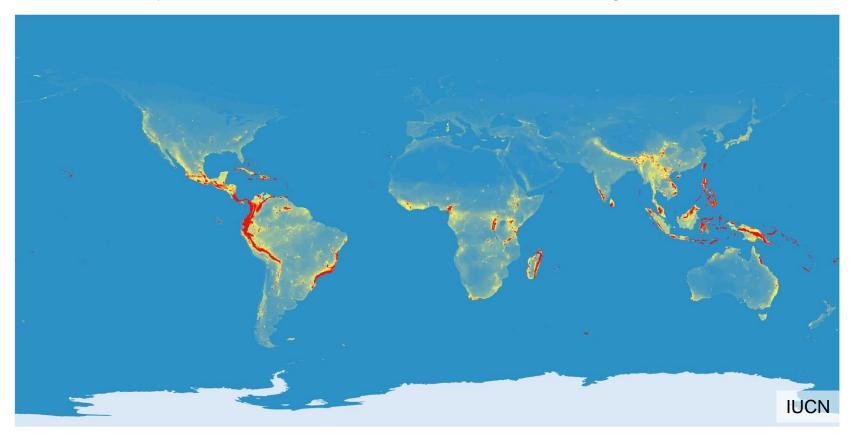
One index to rule them all? A simple thought experiment

Scenario 1: All critically endangered species go extinct

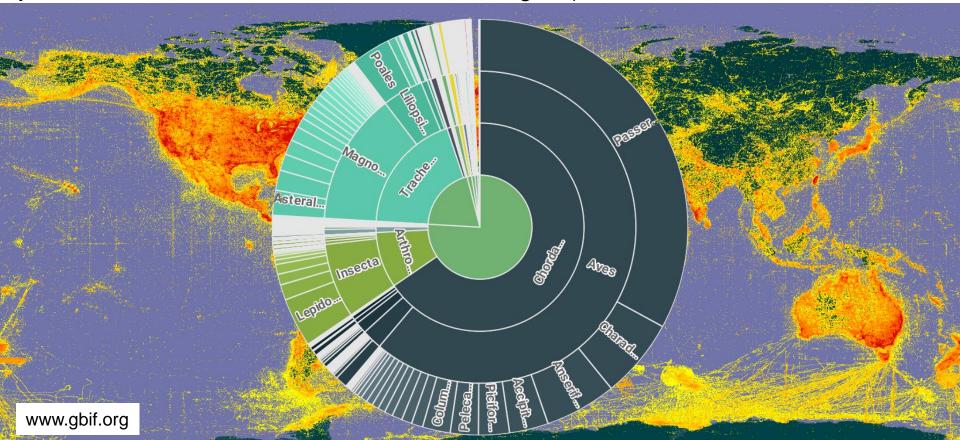

- · Extinction measures flash red
- · Ecosystem health measures only slightly affected!
- · Global socioeconomic system only slightly affected (in the short-medium term, anyway)

Scenario 2: All species are reduced/increased to the smallest population size and geographic spread needed for them not to qualify as threatened

- · Extinction measures go green!
- · Ecosystem health measures flash deep red
- · Global socioeconomic system melts down completely


Any indicator combining these two dimensions has an (implicit or explicit) 'exchange rate' between extinctions and human wellbeing

What should I care about, in terms of preventing extinctions? These are the concentrations of species that have narrow distributions Where the MOST IMPORTANT areas are doesn't change hugely rapidly



What should I do, in terms of preventing extinctions?

1. Don't invest in nature-depleting activities in the visible bits of the map 2. De-intensify activities in, and restore, those places (e.g., STAR metric)

Decision-grade data are derived very carefully from very biased raw data Such work *has to* be painstaking and uses huge expertise – so **has to be funded** (The collection of raw data needs secure funding too)

What should I care about, in terms of ecosystem health?

Ecosystem multifunction (resource capture, biomass production, decomposition, nutrient recycling)

Biological diversity (variation in genes, species, functional traits)

modified from Cardinale et al. 2012 Nature

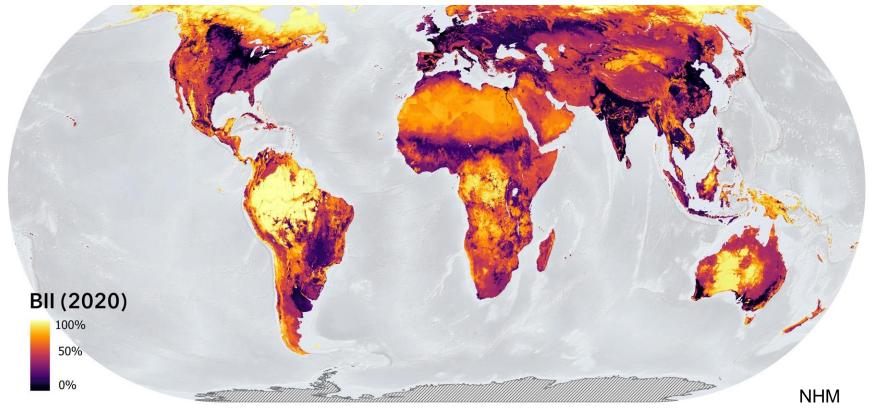
Kinds of ecosystem services

- Habitat creation and maintenance
- Pollination and seed dispersal
- Regulation of air quality
- Regulation of climate
- Regulation of ocean acidification
- Regulation of freshwater quantity & quality
- Formation and regulation of soils
- Regulation of hazards and extreme events
- Regulation harmful organisms & processes
- Energy
- Food & feed

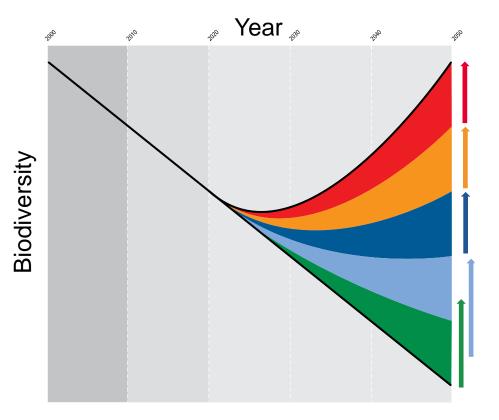
- Material goods
- Materials & assistance -
- Medicinal, biochemical & genetic resources
- Learning & inspiration
- Physical & psychological experience
- Supporting identities
- Maintaining future options

IPBES Global Assessment 2019

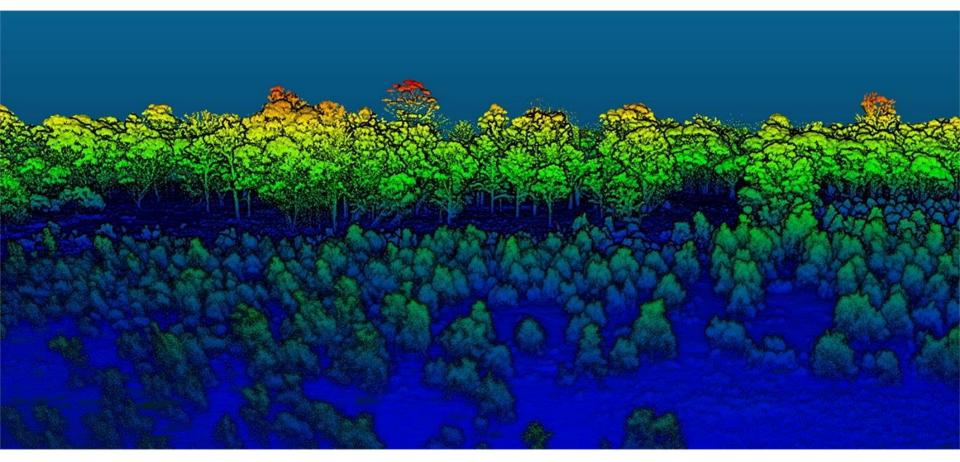
What should I care about, in terms of ecosystem health? Ecosystem health matters (almost) everywhere people do anything It can change more dynamically than importance – time series is very useful


BII (2020)

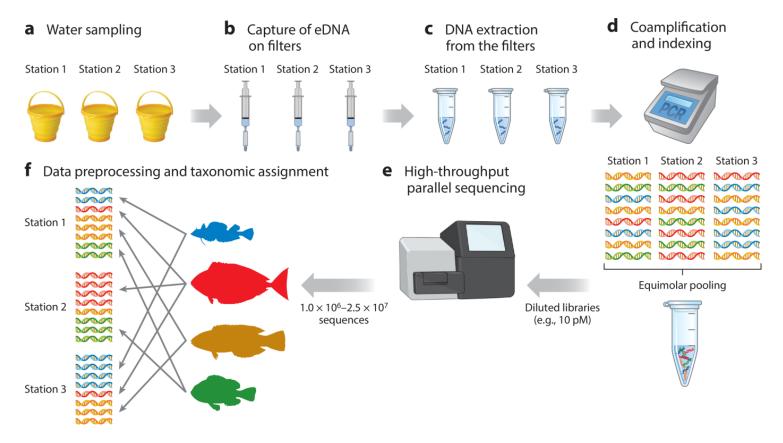
0%


What should I do, in terms of ecosystem health?

- 1. De-intensify activities in unhealthy systems where people rely on local ecosystem services
- 2. Divest from businesses that are poor stewards of ecosystem health
- 3. Invest in actions that are nature-positive


Defining nature-positive

Actions are nature-positive if they improve the <u>expected</u> overall <u>global</u> status of <u>biodiversity</u> relative to <u>counterfactuals</u> without them


- Has to be the <u>expected value</u>
 - Requires a model
- Has to be <u>global</u>
 - Or with constraints to stop offshoring (i.e., effectively global)
- Biodiversity: At least 2 dimensions:
 - Species persistence extinction is a tragedy
 - Ecosystem health we depend on it
- Has to be vs counterfactuals
 - Or organisations have to fix society's mess, not just their own

Verifying nature-positive: 'bottom-up' monitoring with new technologies

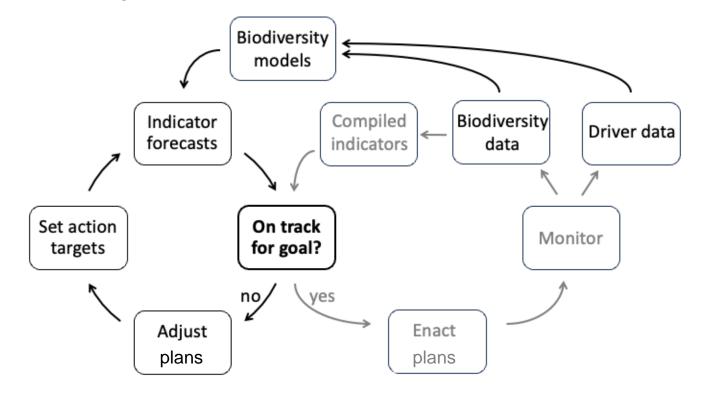
Camaretta et al. 2020 New Forests

Verifying nature-positive: 'bottom-up' monitoring with new technologies

Miya M. 2022 Annu. Rev. Mar. Sci. 14:161–85 Miya 2022 Ann Rev Marine Sci

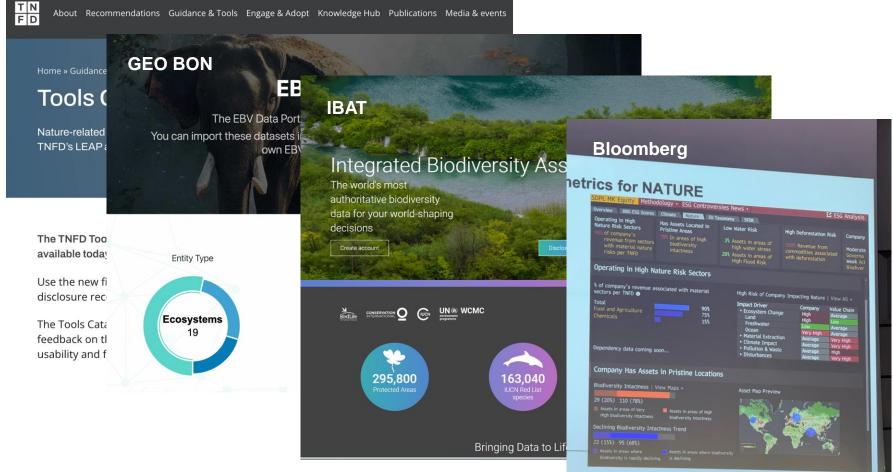
Verifying nature-positive: 'bottom-up' monitoring with new technologies

<u>A</u>utomated <u>M</u>onitoring of <u>I</u>nsects (<u>AMI</u>) system


Long-term monitoring of moths at scale

- UV/white lighting for attracting moths
- Hi-res cameras to image moths

Combining models and monitoring gives us a 'sat-nav' for nature


Need to monitor drivers as well as biodiversity Relies on data being available to improve the models

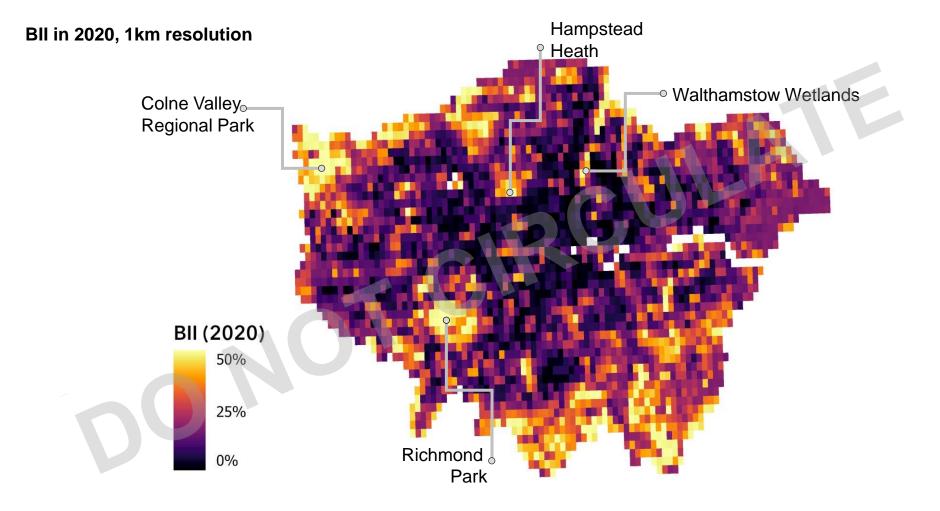
Purvis, in revision, Phil Trans R Soc B

Data platforms (a selection)

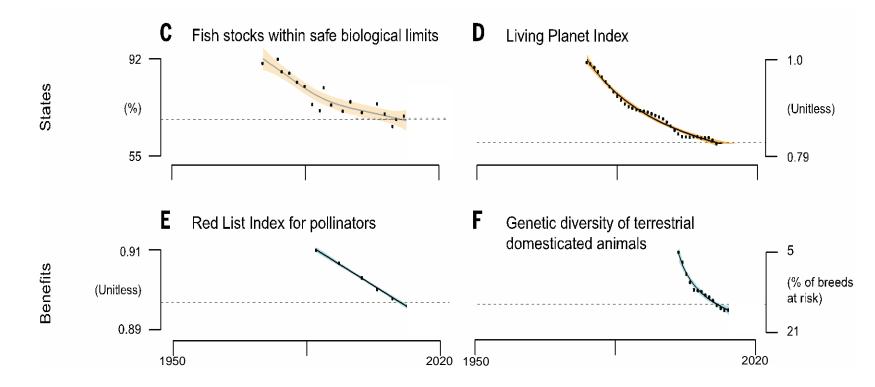
About Recommendations Guidance & Tools Engage & Adopt Knowledge Hub Publications Media & events

What should I do? Take-home messages

- 1. Use data whose methodologies are transparent, peer-reviewed and coherent
- 2. Remember the pitfalls of 'hybrid' indicators or indices
- 3. To reduce extinctions: mitigate existing activities in important areas; don't invest in new activities there
- 4. To maintain ecosystem health: mitigate activities in damaged ecosystems on which people depend; divest from poor stewards; invest in nature-positive actions
- 5. Monitor to verify gains and contribute to data repositories
- 6. Accept that decision-grade data do cost money: you won't get what you don't pay for



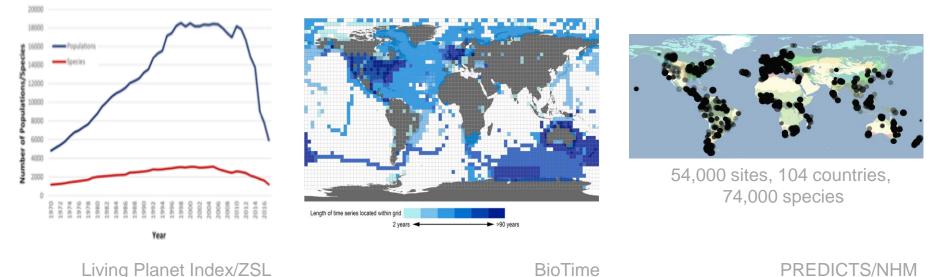
Natural History Museum


Thank you

© The Trustees of the Natural History Museum, London

De Palma et al. (2024 and in prep.)

Compilation-based indicators look backwards in time If compiled from public databases, will lack spatial resolution Model-based indicators permit spatial resolution


Tittensor et al. 2014 Science

Data behind 'top-down' dynamic indicators are also very imperfect

Population time series (since 1970)

Assemblage time series (since 1870)

PREDICTS/BII database

Compiling and analysing such data into useful indicators is painstaking, highly skilled work, which needs to be funded

Global Policy Goals: a multilateral approach for a sustainable future

Ana Maria Hernandez Salgar

Introduction

- Global crises: biodiversity loss, climate change, pollution
- Interconnection: Human health, peace, and economic stability
- Policy frameworks: SDGs, Paris Agreement, Kunming-Montreal Global Biodiversity Framework
- Guiding science: IPBES, IPCC, Global Resources Outlook

Global Environmental Challenges

Biodiversity Loss:

1 million species threatened with extinction (IPBES) Impacts on SDGs 14 (Life Below Water), 15 (Life on Land), and 2 (Zero Hunger)

Climate Change:

Failure to meet Paris Agreement targets (IPCC)

Threats to SDG 13 (Climate Action), 1 (No Poverty), 8 (Decent Work)

	E	

Pollution:

Environmental degradation from industrial activities (GRO)

Impact on SDGs 3 (Health), 6 (Water), 12 (Sustainable Consumption)

Interconnection between nature, climate and people

Climate Change impacts on biodiversity (IPCC)

• Biodiversity loss worsens climate vulnerability

Ecosystem services:

- Regulation of climate, food security, water purification (IPBES)
- Connection to human health (SDG 3) and economic productivity (SDG 8)

Pollution's effects on ecosystems and health:

- Air and water pollution (GRO)
- Implications for SDGs 6, 3, and 12

Main policy frameworks for nature, climate and people

Kunming-Montreal Framework Goals:

- Goal A: Halt biodiversity loss (30% land/sea by 2030) – SDGs 14, 15
- Goal B: Ecosystem services for food, water, and climate – SDG 2, 6, 13
- Goal C: Equitable access for Indigenous Peoples (SDGs 10, 5)
- Goal D: Financial resources and partnerships (SDG 17)

Paris Agreement: Critical for SDG 13 (Climate Action)

- Net-zero emissions by 2050
- Nature-based solutions for climate mitigation

Business Risks Due to Ecological Breakdown

Supply Chain
Disruptions:

•Impact on agriculture, fisheries, forestry. Resource scarcity and production risks (SDG 12) Physical Risks from Climate Change:

•Extreme weather disrupting operations (IPCC). Damage to infrastructure and assets Regulatory Risks:

•Stricter environmental regulations. Financial risks from non-compliance (Paris Agreement, Kunming-Montreal Framework) Reputation and Consumer Preferences:

•Growing demand for sustainable practices. Impact on brand reputation and market share

Transition Risks:

•Shift to low-carbon, nature-positive economy. Risks for fossil fueldependent industries (IPCC)

Measuring Progress and Metrics

-Biodiversity Health Metrics:

- Species population trends (IPBES)
- Habitat integrity and ecosystem service assessments (SDG 14, 15)

Carbon Emissions:

• Tracking emissions to meet Paris Agreement targets (SDG 13)

Resource Efficiency:

• Monitoring resource use and waste (SDG 12, GRO)

Business Impact Metrics:

- ESG metrics for business risk assessment (IPCC)
- Transparency in reporting environmental impacts

.

••••

.

.....

Building Partnerships for Action

Whole-of-society, wholeof-government approach:

• Engagement with all sectors: public, private, and civil society

Indigenous Peoples and Local Communities (IPLCs):

 Guardians of biodiversity (IPBES). Central to achieving SDGs 10, 16

Women and Youth:

• Inclusion to strengthen resilience (SDGs 5, 8). Critical role in climate and biodiversity action

Private Sector:

• Adopting sustainable practices and aligning with global frameworks (SDGs 12, 17)

Academia and Research:

• Science-based policy and innovation (IPCC, IPBES)

Conclusion

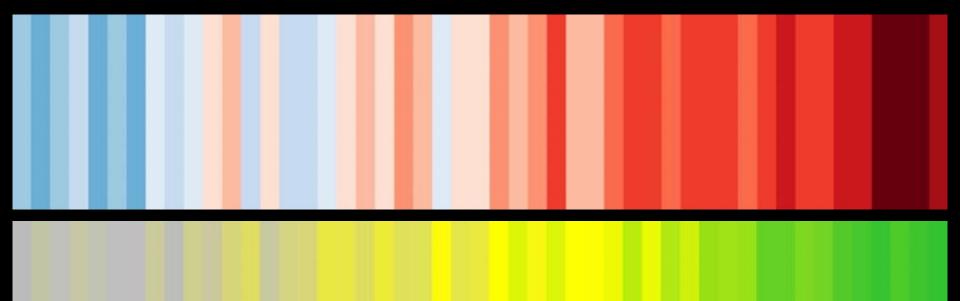
Path forward: Integrating biodiversity, climate, health, and peace goals.

The role of private sector:

- Understanding risks and opportunities in sustainability
- Aligning with global frameworks for long-term resilience

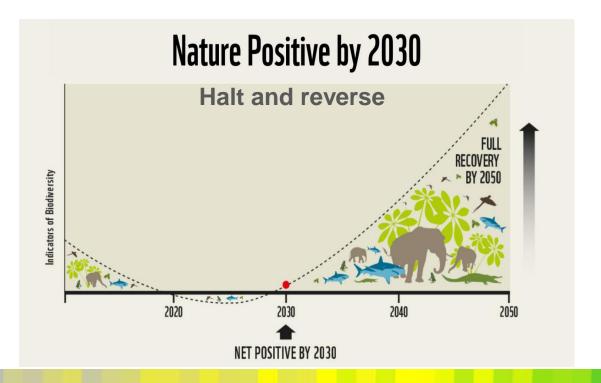
Call to Action:

- Collaboration across all sectors and stakeholders
- Achieving transformative change in line with the SDGs, Paris Agreement, and Kunming-Montreal Framework



From tipping to turning point

Measuring Nature Positive outcomes between rigour and practicality


Marco Lambertini Convener, Nature Positive initiative

Global warming & Biodiversity loss 1970-2018

Nature Positive: the Global Goal for Nature

A common definition : 'Halt and Reverse Nature Loss by 2030 on a 2020 baseline...' – codified in the Global Biodiversity Framework

NATURF

INITIATIVE

Building Consensus on State of Nature Metrics to Drive Nature Positive Outcomes

Marco Lambertini, Convenor, Nature Positive Initiative

To drive nature positive outcomes we need a common set of metrics to measure the state of nature and how it is recovering over time.

But...

We lack Consensus on a small set of credible, practical and affordable state of nature metrics across scales, users and geographies

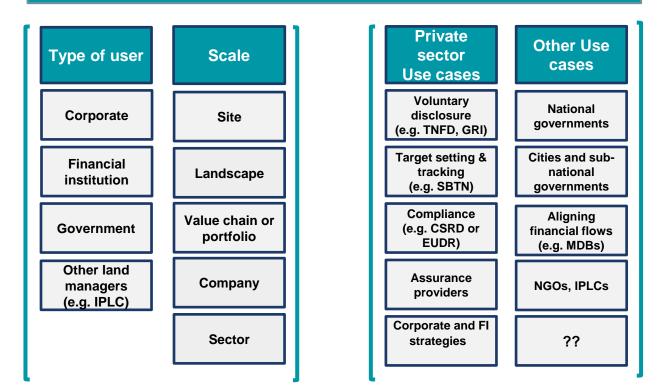
We lack clarity and confidence to begin the journey and accelerate nature positive outcomes We need a tool to <u>drive</u> and <u>track</u> <u>progress</u> towards halting and reversing biodiversity loss the GBF mission

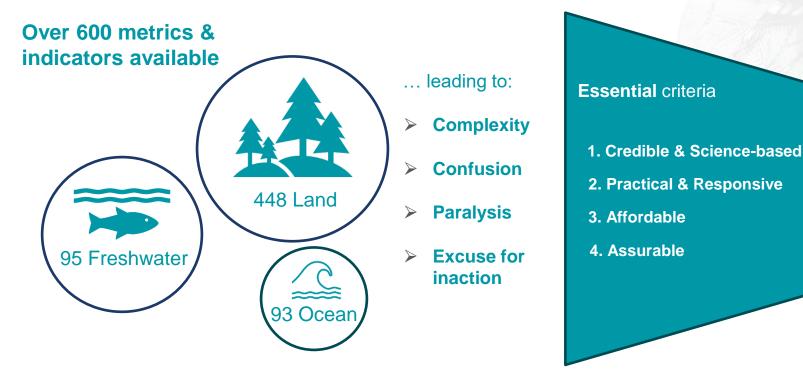
So....

We need to <u>ensure</u> <u>accountability</u> and <u>recognition</u> along the journey towards genuine nature positive outcomes

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.


14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!


SITUATION: THERE ARE 15 COMPETING STANDARDS.

Users and Use Cases

This framework can be applied by both state and non-state actors.

We cannot measure all the complexity of biodiversity...

A State of Nature metrics framework with a small set of indicators and metrics

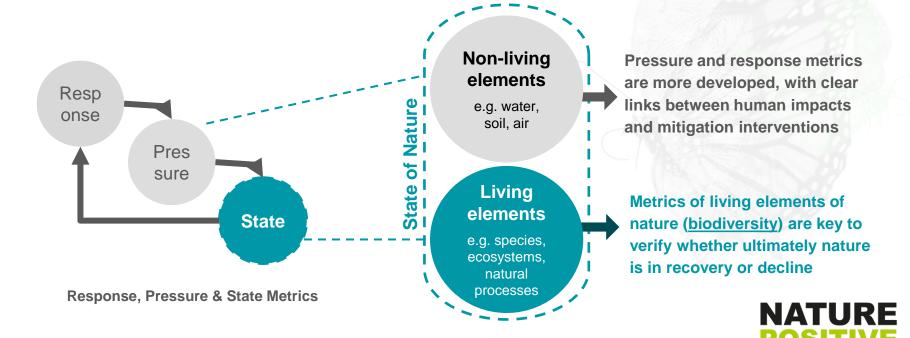
NATURE

What is in scope of this project

In scope

- Geography: universal scale, site, landscape and national
- The actor/user: government, individual business entity, financial institution and investment portfolio, and value chains
- Terrestrial metrics

Out of scope


- Target setting
- Social benefits
- Value chains/traceability recommendations
- Broader sector-specific guidance

How to include Natural Processes/Ecosystem Services
 Next phase
 Incorporation of traditional and indigenous knowledge metrics
 Guidance on Contribution versus Attribution to be developed

...so we are focusing on key elements of living nature.

This initiative focuses on state of nature metrics across biodiversity on land, freshwater and sea

The State of Nature Metrics Framework

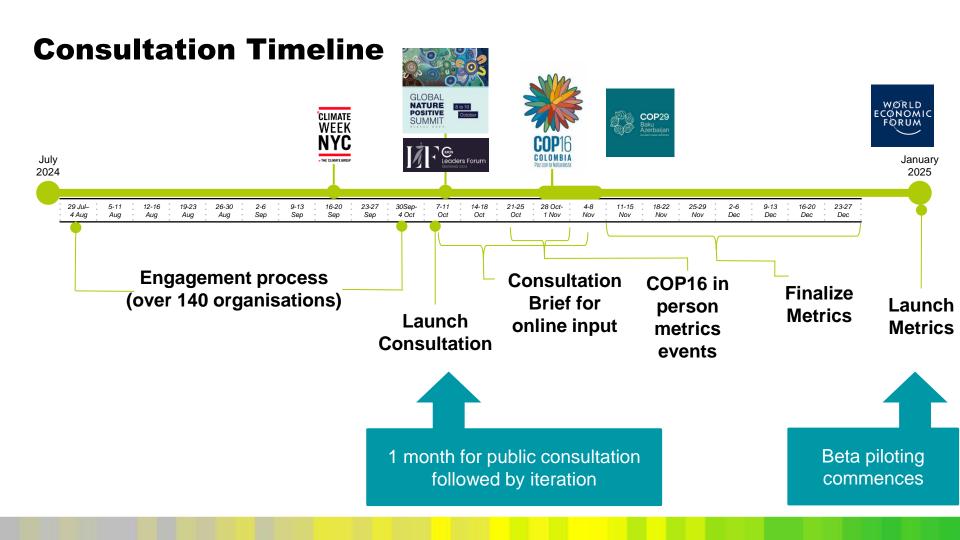
Metrics Set				
Species	Species	Species		
Ecosystems	Ecosystems	Ecosystems		
Natural Processes	Natural Processes	Natural Processes		
Species	Species	Species		
Ecosystems	Ecosystems	Ecosystems		
Natural Processes	Natural Processes	Natural Processes		

4 Universal metrics 5 (up to) Case-specific metrics

Proposed Indicator and Metric Framework

State of Nature (SON) Metrics

		Indicators (IND)	Entry-level Standard Advanced
Universal	Ecosystem	Ecosystem Extent & Classification (IND 1)	SON E1 SON S1 SON A1
		Ecosystem Condition (IND 2)	- SON S2 SON A2
		Landscape Intactness (IND 3)	SON E3 SON S3 SON A3
	Species	Species Extinction Risk (IND 4)	SON E4 SON S4 SON A4
	Natural processes	Planned for future integration	
Case- specific	Ecosystem	Extent of highly-threatened ecosystems (IND 5)	SON E5 SON S5
		Condition of highly-threatened ecosystems (IND6)	SON E6 SON S6 -
		Proportion of natural or semi-natural habitat (IND 7)	SON E7 SON S7 SON A7
		Condition of semi-natural habitat (IND 8)	- SON S8 SON A8
	Species	Species Population Abundance (IND 9)	SON E9 SON S9 SON A9
	Natural processes	Planned for future integration	Metrics most users should adopt


What changes across the metrics maturity scale?

As users advance through the "Metrics Maturity Scale" they should report on a greater level of granularity

Example: Ecosystem Extent (Change and Classification) (IND1) - Individual

			Guidance on data Capture		
Maturity	Metric	Metric Descriptor	Spatial Resolution	Ecosystem classification level	Age of data
Entry-level	Change in ecosystem extent		GET level 3 <30m GET level 4	<18 months	
Standard	Change in ecosystem extent with ground- truthing	# and % of loss, gain and net change for each ecosystem extent (ha/year)		GET level 4	Ļ
Advanced	Change in ecosystem extent at high resolution and with ground-truthing	•	<10m	GET level 5 or 6	<6 months

* GET: Global Ecosystem Typology

Join

THE NATURE POSITIVE FORUM

to stay connected

Building Consensus on State of Nature Metrics to Drive Nature Positive Outcomes

Join the State of Nature/Nature Positive metrics online consultation

Bridging the Gap

Heather Tallis Senior Fellow, University of California, Santa Cruz

TARGET 14: Integrate Biodiversity in Decision-Making at Every Level

Priorities & Mechanisms for Greater Collaboration

- Focus collaborations on the science needed to change core business
- Mechanisms to supercharge science-business-policy interface

Focus on Science Needed to Change Core Processes

Core processes have huge effects on business – changing them is a fast track to reducing risk

- Sourcing Decisions
- Offerings
- Risk analyses
- Benefit cost analyses

Sourcing Connections to Nature - In Space

Have models to analyze sourcing options

Collaborate on spatial data - and relevant aspects of nature

Offerings of Ecological Awesomeness

Collaborate on standards, guidelines

Collaborate on embedding habitat changes in risk models

Reef loss (present 50 yr storm)

Climate Change 2050 (0.5m slr + future 50 yr storm)

Flooding in Caye Caulker, Belize

Benefit Cost Analyses

Much ecological risk is overlooked in typical BCAs – including ecosystem services helps

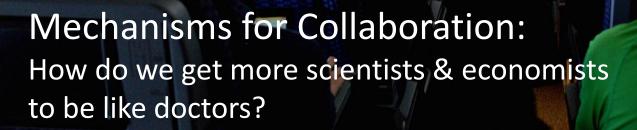
BCAs influence ~\$1.2 trillion per year in U.S. public benefit programs

Connections Between BCA and Ecosystem Services

Collaborate on knowledge gaps:

- Ecosystem Services
- Carbon storage and sequestration in coastal marine habitats and soils
- Riverine, coastal management effects on flood risk and return to normalcy following storms
- Wildfire and Extreme Events
- Attribution of wildfire effects to specific management options (fuels management, preparedness, etc)
- Data on relationship between wildfire characteristics (intensity, acreage etc) and wildfire costs

ADVANCING THE FRONTIERS OF BENEFIT-COST ANALYSIS: FEDERAL PRIORITIES AND DIRECTIONS FOR FUTURE RESEARCH


> Annual Report by the COMITTEE ON FRONTIERS OF BENEFIT-COST ANALYSIS

the

NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

DECEMBER, 2023

Barriers to More Collaboration

- Mismatch in **timeframes**
- People in key roles lack skills to consider ecological risk & opportunity
- Incentives don't reward collaborations on core processes

Mechanisms to Match Timeframes

Any need for translation can mean death

- Rapid problem-solving partnerships
 - between scientists, business and government—around specific decisions
 - 6 months or less

Mechanisms to Match Timeframes

\$20M advance purchase agreement to scale up Happy Seeders

AGRICULTURE AND ENVIRONMENT

Fields on fire: Alternatives to crop residue burning in India

Farmer profit can be increased and air quality improved

By P. Shyamsundar³, N. P. Springer², H. Tallis¹, S. Polasky²⁻³, M. L. Jat⁴, H. S. Sidhu⁵, P. P. Krishnapriya⁶, N. Skiba¹, W. Ginn¹, V. Ahuja⁷, J. Cummins⁶, I. Datta⁹, H. H. Dholakia¹⁰, J. Dixon¹¹, B. Gerard¹², R. Gupta¹³, J. Hellmann², A. Jadhav¹⁴, H. S. Jat^{4,15}, A. Keil⁴, J. K. Ladha¹⁶, S. Lopez-Ridaura¹³, S. P. Nandrajog¹⁷, S. Paul¹⁷, A. Ritter¹⁷, P. C. Sharma¹⁵, R. Singh¹⁸, D. Singh¹⁹, R. Somanathan²⁰ a rice-wheat cropping system (-4.1 million ha). Concerns over groundwater withdrawals have led to a planting cycle that allows the rice crop to benefit from monsoon rains. This cycle creates a short period (~10 to 20 days) to harvest rice, manage rice crop residue, and plant wheat. Many of the 2.5 million farmers in northwestern India prepare for wheat planting by burning an estimated 23 million metric tons of rice residue in their fields (12).

India's national government recognizes both the air pollution risks and the crucial role of crop residue burning. Despite federal and state regulations since 2014 and related advisories and bans, directives against burn-

Collaborate to Upskill Workforce

Incentives for Collaboration on Core Processes

Incentives to engage scientists on core practice changes recognition, funding, promotion

Incentives for businesses for core practice changes credits, goals, prizes

Incentives for Science-Business Collaboration

Incentives for Science-Business Collaboration

Time is of the essence

Changing core processes is a fast track to lowering risk.

Prioritize collaborations on science needs for embedding biodiversity in those processes.

Final reflections

Sir Partha Dasgupta FRS

ROYAL SOCIETY

The Global Impact Inequality:

 $Ny/\alpha > G$

 $Ny/\alpha > G(S)$

N: population
y: per capita income
α: efficiency with which Nature's goods are converted into GDP
S: Nature's stock
G: Nature's regeneration rate (it is a function of S)

Current ratio of LHS to RHS is 1.7 (possibly a lot higher)

ROYAL SOCIET