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The AI revolution in scientific research

The Royal Society and The Alan Turing Institute
The Royal Society is the UK’s national academy of sciences. 
The Society’s fundamental purpose, reflected in its founding 
Charters of the 1660s, is to recognise, promote, and support 
excellence in science and to encourage the development 
and use of science for the benefit of humanity. 

The Alan Turing Institute is the UK’s national institute for data 
science and artificial intelligence. Its mission is to make great 
leaps in research in order to change the world for the better.

In April 2017, the Royal Society published the results of 
a major policy study on machine learning. This report 
considered the potential of machine learning in the next  
5 – 10 years, and the actions required to build an environment 
of careful stewardship that can help realise its potential. 
Its publication set the direction for a wider programme of 
Royal Society policy and public engagement on artificial 
intelligence (AI), which seeks to create the conditions in which 
the benefits of these technologies can be brought into being 
safely and rapidly.

As part of this programme, in February 2019 the Society 
convened a workshop on the application of AI in science. 
By processing the large amounts of data now being 
generated in fields such as the life sciences, particle physics, 
astronomy, the social sciences, and more, machine learning 
could be a key enabler for a range of scientific fields, 
pushing forward the boundaries of science. 

This note summarises discussions at the workshop. It is 
not intended as a verbatim record and its contents do not 
necessarily represent the views of all participants at the event, 
or Fellows of the Royal Society or The Alan Turing Institute.

Data in science: from the t-test to the frontiers of AI 
Scientists aspire to understand the workings of nature, 
people, and society. To do so, they formulate hypotheses, 
design experiments, and collect data, with the aim of 
analysing and better understanding natural, physical, and 
social phenomena. 

Data collection and analysis is a core element of the 
scientific method, and scientists have long used statistical 
techniques to aid their work. In the early 1900s, for example, 
the development of the t-test gave researchers a new tool 
to extract insights from data in order to test the veracity of 
their hypotheses. Such mathematical frameworks were vital 
in extracting as much information as possible from data that 
had often taken significant time and money to generate 
and collect. 

Examples of the application of statistical methods to scientific 
challenges can be seen throughout history, often leading to 
discoveries or methods that underpin the fundamentals of 
science today, for example:

•	  The analysis by Johannes Kepler of the astronomic 
measurements of Tycho Brahe in the early seventeenth 
century led to his formulation of the laws of planetary 
motion, which subsequently enabled Isaac Newton FRS 
(and others) to formulate the law of universal gravitation.

•	  In the mid-nineteenth century, the laboratory at 
Rothamsted was established as a centre for agricultural 
research, running continuously monitored experiments 
from 1856 which are still running to this day. Ronald Fisher 
FRS – a prominent statistician – was hired to work there in 
1919 to direct analysis of these experiments. His work went 
on to develop the theory of experimental design and lay 
the groundwork for many fundamental statistical methods 
that are still in use today.

•	   In the mid-twentieth century, Margaret Oakley Dayhoff 
pioneered the analysis of protein sequencing data, a 
forerunner of genome sequencing, leading early research 
that used computers to analyse patterns in the sequences.
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Throughout the 20th century, the development of artificial 
intelligence (AI) techniques offered additional tools for 
extracting insights from data. 

Papers by Alan Turing FRS through the 1940s grappled 
with the idea of machine intelligence. In 1950, he posed the 
question “can machines think?”, and suggested a test for 
machine intelligence – subsequently known as the Turing 
Test – in which a machine might be called intelligent, if its 
responses to questions could convince a person that it 
was human. 

In the decades that followed, AI methods developed 
quickly, with a focus on symbolic methods in the 1970s and 
1980s that sought to create human-like representations of 
problems, logic and search, and expert systems that worked 
from datasets codifying human knowledge and practice to 
automate decision-making. These subsequently gave way 
to a resurgence of interest in neural networks, in which 
layers of small computational units are connected in a way 
that is inspired by connections in the brain. The key issue 
with all these methods, however, was scalability – they 
became inefficient when confronted with even modest 
sized data sets. 

The 1980s and 1990s saw a strong development of 
machine learning theory and statistical machine learning, 
the latter in particular driven by the increasing amount 
of data generated, for example from gene sequencing 
and related experiments. The 2000s and 2010s then 
brought advances in machine learning, a branch of 
artificial intelligence that allows computer programs to 
learn from data rather than following hard-coded rules, 
in fields ranging from mastering complex games to 
delivering insights about fundamental science. 

The expression ‘artificial intelligence’ today is therefore 
an umbrella term. It refers to a suite of technologies that 
can perform complex tasks when acting in conditions 
of uncertainty, including visual perception, speech 
recognition, natural language processing, reasoning, 
learning from data, and a range of optimisation problems. 

Advances in AI technologies offer more powerful 
analytical tools
The ready availability of very large data sets, coupled with 
new algorithmic techniques and aided by fast and massively 
parallel computer power, has vastly increased the power of 
today’s AI technologies. Technical breakthroughs that have 
contributed to the success of AI today include:

•	  Convolutional neural networks: multi-layered ‘deep’ 
neural networks, that are particularly adapted to image 
classification tasks by being able to identify the relevant 
features required to solve the problem1. 

•	  Reinforcement learning: a method for finding optimal 
strategies for an environment by exploring many possible 
scenarios and assigning credit to different moves based 
on performance2. 

•	  Transfer learning: an old idea of using concepts learned in 
one domain on a new unknown one, this idea has enabled 
the use of deep convolutional nets trained on labelled 
data to transfer already-discovered visual features to 
classify images from different domains with no labels3. 

•	  Generative adversarial networks: continues the idea of 
pitching the computer against itself by co-evolving the neural 
network classifier with the difficulty of the training data set4. 

1.  These techniques were, for example, used to classify the ImageNet database of labelled photos with unprecedented accuracy.

2.  The breakthrough example was the AlphaGo project by DeepMind, which used this approach to learn how to play the game Go at expert human levels 
by simulating many games pitching the computer against itself. Reinforcement learning has recently been used to autonomously design new quantum 
experiments and techniques.

3.  This has been used successfully for classifying nanoscale images from electron microscopes, for example.

4.  An original application of this is the generation of fake, but realistic, human faces. The method has also found use in scientific discovery, for example in 
classifying 3D particle showers at the Large Hadron Collider.

Image: Alan Turing. © Godrey Argent Studio.



THE AI REVOLUTION IN SCIENTIFIC RESEARCH 3

AI as an enabler of scientific discovery
AI technologies are now used in a variety of scientific 
research fields. For example:

•	  Using genomic data to predict protein structures: 
Understanding a protein’s shape is key to understanding 
the role it plays in the body. By predicting these shapes, 
scientists can identify proteins that play a role in 
diseases, improving diagnosis and helping develop new 
treatments. The process of determining protein structures 
is both technically difficult and labour-intensive, yielding 
approximately 100,000 known structures to date5. While 
advances in genetics in recent decades have provided 
rich datasets of DNA sequences, determining the shape 
of a protein from its corresponding genetic sequence – 
the protein-folding challenge – is a complex task. To help 
understand this process, researchers are developing 
machine learning approaches that can predict the three-
dimensional structure of proteins from DNA sequences. 
The AlphaFold project at DeepMind, for example, has 
created a deep neural network that predicts the distances 
between pairs of amino acids and the angles between 
their bonds, and in so doing produces a highly-accurate 
prediction of an overall protein structure6. 

•	  Understanding the effects of climate change on cities 
and regions: Environmental science combines the need 
to analyse large amounts of recorded data with complex 
systems modelling (such as is required to understand 
the effects of climate change). To inform decision-making 
at a national or local level, predictions from global 
climate models need to be understood in terms of their 
consequences for cities or regions; for example, predicting 
the number of summer days where temperatures exceed 
30°C within a city in 20 years’ time7. Such local areas might 
have access to detailed observational data about local 
environmental conditions – from weather stations, for 
example – but it is difficult to create accurate projections 
from these alone, given the baseline changes taking place 
as a result of climate change. Machine learning can help 
bridge the gap between these two types of information. 
It can integrate the low-resolution outputs of climate 
models with detailed, but local, observational data; the 
resulting hybrid analysis would improve the climate models 
created by traditional methods of analysis, and provide 
a more detailed picture of the local impacts of climate 
change. For example, a current research project at the 
University of Cambridge8 is seeking to understand how 
climate variability in Egypt is likely to change over coming 
decades, and the impact these changes will have on 
cotton production in the region. The resulting predictions 
can then be used to provide strategies for building climate 
resilience that will decrease the impact of climate change 
on agriculture in the region.

5.  Lee, J, Freddolkino, P. and Zhang, Y. (2017) Ab initio protein structure prediction, in D.J. Rigden (ed.), From Protein Structure to Function with 
Bioinformatics, available at: https://zhanglab.ccmb.med.umich.edu/papers/2017_3.pdf 

6.  DeepMind (2018) AlphaFold: Using AI for scientific discovery, available at: https://deepmind.com/blog/alphafold/ 

7.  Banerjee A, Monteleoni C. 2014 Climate change: challenges for machine learning (NIPS tutorial). See https://www.microsoft.com/en-us/research/video/
tutorial-climate-change-challenges-for-machine-learning/ (accessed 22 March 2017).

8.  See ongoing work at the British Antarctic Survey on machine learning techniques for climate projection.

© cosmin4000.
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•	  Finding patterns in astronomical data: Research in 
astronomy generates large amounts of data and a key 
challenge is to detect interesting features or signals from 
the noise, and to assign these to the correct category 
or phenomenon. For example, the Kepler mission is 
seeking to discover Earth-sized planets orbiting other 
stars, collecting data from observations of the Orion Spur, 
and beyond, that could indicate the presence of stars or 
planets. However, not all of this data is useful; it can be 
distorted by the activity of on-board thrusters, by variations 

in stellar activity, or other systematic trends. Before the 
data can be analysed, these so-called instrumental 
artefacts need to be removed from the system. To help 
with this, researchers have developed a machine learning 
system that can identify these artefacts and remove them 
from the system, cleaning it for later analysis9. Machine 
learning has also been used to discover new astronomical 
phenomena , for example: finding new pulsars from 
existing data sets10; identifying the properties of stars11 and 
supernovae12; and correctly classifying galaxies13.

9.  Roberts S, McQuillan A, Reece S, Aigrain S. 2013 Astrophysically robust systematics removal using variational inference: application to the first month 
of Kepler data. Mon. Not. R. Astron. Soc. 435, 3639–3653. (doi:10.1093/mnras/stt1555)

10.  Morello V, Barr ED, Bailes M, Flynn CM, Keane EF, van Straten W. 2014 SPINN: a straightforward machine learning solution to the pulsar candidate 
selection problem. Mon. Not. R. Astron. Soc. 443, 1651–1662. (doi: 10.1093/mnras/ stu1188)

11.  Miller A et al. 2015 A machine learning method to infer fundamental stellar parameters from photometric light curves. Astrophys. J. 798, 17. (doi: 
10.1088/0004-637X/798/2/122)

12.  Lochner M, McEwen JD, Peiris HV, Lahav O, Winter MK. 2016 Photometric supernova classification with machine learning. Astrophys. J. Suppl. Ser. 225, 31. 
(doi: 10.3847/0067-0049/225/2/31)

13.  Banerji M et al. 2010 Galaxy Zoo: reproducing galaxy morphologies via machine learning. Mon. Not. R. Astron. Soc. 406, 342–353. (doi: 10.1111/j.1365-
2966.2010.16713.x)

© CHBD.
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Machine learning has become a key tool for researchers 
across domains to analyse large datasets, detecting 
previously unforeseen patterns or extracting unexpected 
insights. While its potential applications in scientific 

research range broadly across disciplines, and will include 
a suite of fields not considered in detail here, some 
examples of research areas with emerging applications  
of AI include:

14.  Alan Turing Institute project: Antarctic seal populations, with the British Antarctic Survey

15.  Alan Turing Institute project: Living with Machines, with AHRC

Satellite imaging to support conservation 
Many species of seal in the Antarctic are extremely 
difficult to monitor as they live exclusively in the sea-ice 
zone, a region that is particularly difficult to survey. The 
use of very high-resolution satellites enables researchers 
to identify these seals in imagery at greatly reduced cost 
and effort. However, manually counting the seals over the 
vast expanse of ice that they inhabit is time consuming, 
and individual analysts produce a large variation in count 
numbers. An automated solution, through machine 
learning methods, could solve this problem, giving quick, 
consistent results with known associated error14. 

Understanding social history from archive material 
Researchers are collaborating with curators to build 
new software to analyse data drawn initially from millions 
of pages of out-of-copyright newspaper collections 
from within the British Library’s National Newspaper 
archive. They will also draw on other digitised historical 
collections, most notably government-collected data, 
such as the Census and registration of births, marriages 
and deaths. The resulting new research methods will 
allow computational linguists and historians to track 
societal and cultural change in new ways during the 
Industrial Revolution, and the changes brought about 
by the advance of technology across all aspects 
of society during this period. Crucially, these new 
research methods will place the lives of ordinary 
people centre-stage15. 

© Grafissimo. © Sezeryadigar.
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Understanding complex organic chemistry 
The goal of this pilot project between the John Innes 
Centre and The Alan Turing Institute is to investigate 
possibilities for machine learning in modelling and 
predicting the process of triterpene biosynthesis in 
plants. Triterpenes are complex molecules which form 
a large and important class of plant natural products, 
with diverse commercial applications across the health, 
agriculture and industrial sectors. The triterpenes are 
all synthesized from a single common substrate which 
can then be further modified by tailoring enzymes to 
give over 20,000 structurally diverse triterpenes. Recent 
machine learning models have shown promise at 
predicting the outcomes of organic chemical reactions. 
Successful prediction based on sequence will require 
both a deep understanding of the biosynthetic pathways 
that produce triterpenes, as well as novel machine 
learning methodology18.

Driving scientific discovery from particle physics 
experiments and large scale astronomical data
Researchers are developing new software tools 
to characterise dark matter with data from multiple 
experiments. A key outcome of this research is to 
identify the limitations and challenges that need to be 
overcome to extend this proof-of-principle and enable 
future research to generalise this to other use cases in 
particle physics and the wider scientific community17. 

Materials characterisation using high-resolution imaging
Materials behave differently depending on their internal 
structure. The internal structure is often extracted by 
guiding X-rays through them and studying the resulting 
scattering patterns. Contemporary approaches for 
analysing these scattering patterns are iterative and 
often require the attention of scientists. The scope of this 
activity is to explore the options of using machine learning 
for automatically inferring the structural information of 
materials by analysing the scattering patterns16.

16.  Alan Turing Institute project: Small-Angle X-Ray Scattering 

17.   Alan Turing Institute project: developing machine learning-enabled experimental design, model building and scientific discovery in particle physics.

18. Alan Turing Institute project: Analysis of biochemical cascades

© eAlisa.

© vchal.

© undefined.
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Each different scientific area has its own challenges, and it 
is rare that they can be met by the straightforward ‘off the 
shelf’ use of standard AI methods. Indeed, many applications 
open up new areas of AI research themselves – for 
example, the need to analyse scanned archives of historical 

scientific documents requires the automatic recognition 
and understanding of mathematical formulae and complex 
diagrams. However, there are a number of challenges which 
are recurring themes in the application of AI and its use in 
scientific research, summarised in the box below. 

Research questions to advance the application of AI in science

DATA MANAGEMENT 

Is there a principled method to decide what data to 
keep and what to discard, when an experiment or 
observation produces too much data to store? How will 
this affect the ability to re-use the data to test alternative 
theories to the one that informed the filtering decision?

In a number of areas of science, the amount of data 
generated from an experiment is too large to store, 
or even tractably analyse. This is already the case, for 
example, at the Large Hadron Collider, where typically only 
the data directly supporting the experimental finding are 
kept and the rest is discarded. As this situation becomes 
more common, the use of a principled methodology for 
deciding what to keep and what to throw away becomes 
more important, keeping in mind that the more data that 
is discarded, the less use the stored data actually has for 
future research.

What does ‘open data’ mean in practice where the 
data sets are just too large, complex and heterogenous 
for anyone to actually access and understand them in 
their entirety?

While lots of data today might be ‘free’ it isn’t cheap: found 
data might come in a variety of formats, have missing or 
duplicate entries, or be subject to biases embedded in 
the point of collection. Assembling such data for analysis 
requires its own support infrastructure, involving large teams 
that bring together people with a variety of specialisms: 
legal teams, people who work with data standards, data 
engineers and analysts, as well as a physical infrastructure 

that provides computing power. Further efforts to create an 
amenable data environment could include creating new 
data standards, encouraging researchers to publish data 
and metadata, and encouraging journals and other data 
holders to make their data available, where appropriate. 

Even in an environment that supports open access to 
data produced to publicly-funded scientific research, the 
size and complexity of such datasets can pose issues. 
As the size of these data sets grows, there will be very 
few researchers, if any, who could in practice download 
them. Consequently, the data has to be condensed and 
packaged – and someone has to decide on what basis this 
is done, and whether it is affordable to provide bespoke 
data packages. This then affects the ready availability and 
brings into question what is meant by ‘open access’. Who 
then decides what people can see and use, on what basis 
and in what form?

How can scientists search efficiently for rare or unusual 
events and objects in large and noisy data sets?

A common driver of scientific discovery is the study of rare 
or unusual events (for example, the discovery of pulsars 
in the 1960s). This is becoming increasingly difficult to do 
given the size of data sets now available, and automatic 
methods are necessary. There are a number of challenges 
in creating these: noise in the data is one; another is that 
data naturally includes many more exemplars of ‘normal’ 
objects that unusual ones, which makes it difficult to train 
a machine learning classifier. 

BOX 1
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AI METHODS AND CAPABILITIES

How can machine learning help integrate observations 
of the same system taken at different scales? For 
example, a cell imaged at the levels of small molecule, 
protein, membrane, and cell signalling network. More 
generally, how can machine learning help integrate 
data from different sources collected under different 
conditions and for different purposes, in a way that is 
scientifically valid?

Many complex systems have features at different length 
scales. Moreover, different imaging techniques work at 
different resolutions. Machine learning could help integrate 
what researchers discover at each scale, using structures 
found at one level to constrain and inform the search at 
another level.

In addition to different length scale observations, datasets 
are often created by compiling inputs from different 
equipment, or data from completely different experiments 
on similar subjects. It is an attractive idea to bring together, 
for example, genetic data of a species, and environmental 
data to study how the climate may have driven species’ 
evolution. But there are risks in doing this kind of ‘meta-
analysis’ which can create or amplify biases in the data. 
Can such datasets be brought together to make more 
informative discoveries? 

How can researchers re-use data which they have 
already used to inform theory development, while 
maintaining the rigour of their work? 

The classic experimental method is to make 
observations, then come up with a theory, and then test 
that theory in new experiments. One is not supposed to 
adapt the theory to fit the original observations; theories 
are supposed to be tested on fresh data. In machine 
learning, this idea is preserved by keeping distinct training 
and testing data. However, if data is very expensive to 
obtain (or requires an experiment to be scheduled at an 
uncertain future date), is there a way to re-use the old 
data in a scientifically valid way? 

How can AI methods produce results which are 
transparent as to how they were obtained, and 
interpretable within the disciplinary context?

AI tools are able to produce highly-accurate predictions, 
but a number of the most powerful AI methods at present 
operate as ‘black boxes’. Once trained, these methods can 
produce statistically reliable results, but the end-user will 
not necessarily be able to explain how these results have 
been generated or what particular features of a case have 
been important in reaching a final decision.

In some contexts, accuracy alone might be sufficient to 
make a system useful – filtering telescope observations 
to identify likely targets for further study, for example. 
However, the goal of scientific discovery is to understand. 
Researchers want to know not just what the answer is but 
why. Are there ways of using AI algorithms that will provide 
such explanations? In what ways might AI-enabled analysis 
and hypothesis-led research sit alongside each other in 
future? How might people work with AI to solve scientific 
mysteries in the years to come?

How can research help create more advanced, and more 
accurate, methods of verifying machine learning systems 
to increase confidence in their deployment?

There are also questions about the robustness of current 
AI tools. Further work on verification and robustness in 
AI – and new research to create explainable AI systems 
– could contribute to tackling these issues, giving 
researchers confidence in the conclusions drawn from 
AI-enabled analysis. In related discussions, the fields of 
machine learning and AI are grappling with the challenge 
of reproducibility, leading to calls – for example – for new 
requirements to provide information about data collection 
methods, error rates, computing infrastructure, and more, 
in order to improve reproduceability of machine learning-
enabled papers19. What further work is needed to ensure 
that researchers can be confident in the outcomes of  
AI-enabled analysis?

BOX 1  (continued)

19.  See, for example, Joelle Pineau’s 2018 NeurIPS keynote on reproduceability in deep learning, available at: https://media.neurips.cc/Conferences/
NIPS2018/Slides/jpineau-NeurIPS-dec18-fb.pdf 
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INTEGRATING SCIENTIFIC KNOWLEDGE

Is there a rigorous way to incorporate existing theory/
knowledge into a machine learning algorithm, to constrain 
the outcomes to scientifically plausible solutions?

The ‘traditional’ way to apply data science methods is to 
start from a large data set, and then apply machine learning 
methods to try to discover patterns that are hidden in the 
data – without taking into account anything about where 
the data came from, or current knowledge of the system. 
But might it be possible to incorporate existing scientific 
knowledge (for example, in the form of a statistical ‘prior’) 
so that the discovery process is constrained, in order to 
produce results which respect what researchers already 
know about the system. For example, if trying to detect 
the 3D shape of a protein from image data, could chemical 
knowledge of how proteins fold be incorporated in the 
analysis, in order to guide the search?

How can AI be used to actually discover and create new 
scientific knowledge and understanding, and not just the 
classification and detection of statistical patterns?

Is it possible that one day, computational methods will not 
only discover patterns and unusual events in data, but have 
enough domain knowledge built in that they can themselves 
make new scientific breakthroughs? Could they come up 
with new theories that revolutionise our understanding, 
and devise novel experiments to test them out? Could they 
even decide for themselves what the worthwhile scientific 
questions are? And worthwhile to whom?

BOX 1  (continued)
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AI and scientific knowledge
AI technologies could support advances across a range 
of scientific disciplines, and the societal and economic 
benefits that could follow are significant. At the same time, 
these technologies could have a disruptive influence on the 
conduct of science.

In the near term, AI can be applied to existing data 
analysis processes to enhance pattern recognition and 
support more sophisticated data analysis. There are already 
examples of this from across research disciplines and, 
with further access to advanced data skills and compute 
power, AI could be a valuable tool for all researchers. This 
may require changes to the skills compositions in research 
teams, or new forms of collaboration across teams and 
between academia and industry that allow both to access 
the advanced data science skills needed to apply AI and 
the compute power to build AI systems. 

A more sophisticated emerging approach is to build into 
AI systems scientific knowledge that is already known 
to influence the phenomena observed in a research 
discipline – the laws of physics, or molecular interactions in 
the process of protein folding, for example. Creating such 
systems requires both deeper research collaborations and 
advances in AI methods. 

AI tools could also play a role in the definition and 
refinement of scientific models. An area of promise is the 
field of probabilistic programming (or model-based machine 
learning), in which scientific models can be expressed as 
computer programs, generating hypothetical data. This 
hypothetical data can be compared to experimental data, 
and the comparison used to update the model, which can 
then be used to suggest new experiments – running the 
process of scientific hypothesis refinement and experimental 
data collection in an AI system20.

AI’s disruptive potential could, however, extend much 
further. AI has already produced outputs or actions that 
seem unconventional or even creative – in AlphaGo’s 
games against Lee Sedol, for example, it produced moves 
that at first seemed unintuitive to human experts, but which 
proved pivotal in shaping the outcome of a game, and which 
have ultimately prompted human players to rethink their 
strategies21. In the longer-term, the analysis provided by AI 
systems could point to previously unforeseen relationships, 
or new models of the world that reframe disciplines. 
Such results could advance the frontiers of science, and 
revolutionise research in areas from human health to 
climate and sustainability.

20.  Ghahramani, Z. (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459.

21.   See, for example: https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/ and https://deepmind.com/blog/
alphago-zero-learning-scratch/


