
Small Data Explainer - The impact of small data methods in
everyday life

Maren HackenbergEnvelope1,2, Sophia G Connor1, Fabian Kabus1, June Brawner3, Ella

Markham3,4, Mahi Hardalupas3, Areeq Chowdhury3, Rolf Backofen5,6, Anna Köttgen7,

Angelika Rohde8, Nadine Binder2,9, Harald Binder1,2,6, and the Collaborative

Research Center 1597 Small Data

1Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of

Freiburg, Freiburg, Germany
2Freiburg Center for Data Analysis, Modelling and AI, University of Freiburg, Freiburg, Germany
3The Royal Society, London, United Kingdom
4University of Edinburgh, Edinburgh, United Kingdom
5Department of Computer Science, Faculty of Engineering, University of Freiburg, Germany
6Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
7Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg,

Germany
8Department of Mathematical Stochastics, Faculty of Mathematics and Physics, University of Freiburg,

Germany
9Institute of General Practice/Family Medicine, Faculty of Medicine and Medical Center, University of

Freiburg, Germany

Envelope Corresponding author: maren.hackenberg@uniklinik-freiburg.de

Abstract

The emergence of breakthrough artificial intelligence (AI) techniques has led to a

renewed focus on how small data settings, i.e., settings with limited information, can

benefit from such developments. This includes societal issues such as how best to

include under-represented groups in data-driven policy and decision making, or the

health benefits of assistive technologies such as wearables. We provide a concep-

tual overview, in particular contrasting small data with big data, and identify common

themes from exemplary case studies and application areas. Potential solutions are

described in amore detailed technical overview of current data analysis andmodelling

techniques, highlighting contributions from different disciplines, such as knowledge-

driven modelling from statistics and data-driven modelling from computer science.

By linking application settings, conceptual contributions and specific techniques, we

highlight what is already feasible and suggest what an agenda for fully leveraging

small data might look like.
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1 Introduction

In recent years, there has been an increasing recognition of the potential of small data in tech-

nology development and decision-making processes, complementing and potentially even out-

pacing the trajectory seen for big data [1]–[5]. While there is no consensus on the definition of

small data, small data approaches are typically needed in scenarios where there is a limited

amount of information, such as the analysis of a small number of observations in a dataset.

Whether a dataset is considered small also depends on the amount of heterogeneity between

observations. For example, a clinical patient dataset with six patients might be considered small,

while an experiment with six mice in biomedical research would not be considered small, due

to large diversity in human beings as compared to animal models in biomedical research. A

further important factor is the complexity of the questions to be explored with a dataset. For ex-

ample, training large language models (LLMs) with machine learning techniques requires vast

training datasets of millions or billions of documents. The training of a specialised LLM with

only thousands of documents then is a small data challenge, while the use of simpler statistical

modelling techniques with clinical patient data might only face a small data challenge when the

number of observations is below a few dozen patients.

Insights from small data are particularly valuable in scenarios where large datasets are not avail-

able or where unique and specific data points can provide critical understanding [1], [6]. Unlike

big data approaches, which rely on vast datasets to identify overall trends and patterns, small

data derives insights from smaller and often more homogenous datasets, which might put the

focus on specific, sometimes overlooked subgroups of a population and thus address diversity

in a targeted way [1], [7]. Even when there are large datasets available, they may exclude

under-represented groups, or small groups might not be represented in patterns extracted by

big data techniques, reinforcing biases [8], [9]. Therefore, small data is increasingly seen as a

fruitful and necessary alternative remedying the limitations of big data approaches [5].

Small data problems occur in a range of fields and hence, small data methodologies have also

been developed across many different research areas (e.g., computer science, mathematics,

statistics) [10]–[12]. While this shows the relevance of small data research in many domains, it

also means that research may be impeded due to a lack of interdisciplinary communication [2],

[13]. In particular, the lack of a shared language for small data approaches across disciplines

is a major hurdle, in addition to technical challenges when using small data methods, such

as overfitting and validation [14], [15]. To foster such a shared language, this explainer jointly

addresses audiences from many different communities developing small data methods.

Specifically, we aim to raise awareness of, and illustrate, the unique challenges posed by small

data, which originate from limited sample sizes and limited information in the face of complex

data analysis tasks. This is relevant to a range of audiences, including: 1) policymakers and

policy professionals who are interested in understanding how advancements in data science

can inform policy decisions; 2) data scientists familiar with statistical methods, modelling tech-
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niques, and machine learning algorithms, who are interested in understanding small data tech-

niques, challenges, and potential solutions; and 3) computer scientists, mathematicians, and

statisticians developing algorithms, tools, and techniques for processing and analysing data.

This explainer was guided by three primary questions, answered through extensive desk review

and evidence synthesis:

1. What are the fundamental principles underlying the concept of small data, and how do

they differ from those of big data, particularly in the context of technology development

and decision-making?

2. Why has there been a growing interest in leveraging small data as an alternative approach

to big data, and what are the overarching implications for inclusive technology develop-

ment and decision-making processes?

3. How can various methods and techniques for working with small data be adapted and

optimised to address the unique challenges and opportunities present in the context of AI

development and personalised applications?

To approach these questions, we look at small data from multiple perspectives. Section 2 fo-

cuses on the relevance of both big and small data for policy and decision making, and the core

components of small data applications. We present an overview of big data versus small data

and introduce some limitations of big data that may be addressed by using small data. In par-

ticular, we focus on how big data struggles to represent and deal with extreme values in a data

distribution or subgroups that might need to be described by their own distribution. This means

that under-represented and minority groups can often become invisible or ignored when the

outputs from big data methods are used to inform decisions, which is especially concerning for

high-stakes policy decisions. This section also includes case study examples of small data use

(e.g., rare disease treatment and wearable assistive technology), and introduces the themes of

similarity, transfer, and uncertainty for structuring small data applications and subsequent dis-

cussion of specific methods. It is targeted towards a broad audience with a specific focus on

policymakers.

In Section 3, also targeted towards a broad audience, we highlight some exemplary application

fields of small data. For some of these, some tailored small data approaches have already

been developed, such as for rare disease settings or precision medicine, which could serve as

templates for other application fields, where small data approaches are still lacking.

In Section 4, we describe small data methodologies in more detail (e.g., approaches for incor-

porating similarity, foundation models, few-shot learning, meta learning, and the combination

of knowledge-driven and data-driven modelling). Many of these methodologies were devel-

oped by different disciplines and fields, which may potentially hinder awareness and adoption

of methods by different research groups. To address this, we highlight the contributions of differ-

ent disciplines and explore potential links. We also present some common challenges in using
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small data, such as overfitting and validation. This section therefore takes a more technical

approach and is tailored for an interdisciplinary data science audience.

We conclude with some potential opportunities and propose an agenda for increasing the use

of small data in in Section 5.

2 Small data and policy

2.1 The significance of big data for research and decision making

The ability to process vast amounts of information quickly and efficiently has made possible

the identification of broad trends, prediction of future behaviours, and optimisation of complex

systems. These discoveries and innovations are fuelled by so-called big data. The term big

data initially referred to datasets so vast they required specialised computing solutions for anal-

ysis [16], yet such advanced computing power nowadays is easily available. Despite the name,

sheer size is not what defines big data. In simple terms, big data is more accurately charac-

terised by the ability to search, aggregate, and cross-reference extensive datasets, with poten-

tial challenges due to a large variety of data types and data quality issues [8]. However, from a

sociotechnical lens, big data rests at the intersection of 1) technology (maximising the power of

computation and algorithms to gather and analyse large datasets); 2) analysis (identifying pat-

terns within large datasets to make claims about processes); and 3) mythology (the widespread

trust in large datasets to offer the possibility of truth, objectivity or accuracy previously not pos-

sible) [17].

The contemporary emphasis on big data began in the early 2000s, coinciding with advance-

ments in computing power and the large varied quantities of data generated and collected by

digital technologies, including those connected through the internet. Global technology compa-

nies began to harness big data to transform their business models, creating highly personalised

user experiences [18], [19]. The success of these enterprises underscored the value of big

data, leading to the widespread adoption of big data practices across various sectors, including

healthcare, finance and public policy [20].

The corresponding increased awareness of the opportunities of data and focus on gathering

data for better understanding structures and processes has led to significant advancements,

regardless of whether specific applications are big data or not. For example, data availability in

healthcare has enabled breakthroughs in precision medicine [21] and predictive maintenance

in manufacturing [22]. More than this, big data created “a radical shift in how we think about re-

search […] Big Data reframes key questions about the constitution of knowledge, the processes

of research, how we should engage with information, and the nature and the categorization of

reality”[17].
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Aclinician specialising inGaucher disease, a rare genetic disorder that leads to the buildup

of glucocerebroside in various organs [23] due to the deficiency of a specific enzyme,

wants to assess whether a patient is responding well to enzyme replacement therapy

(ERT). It is often challenging for the clinician to find the correct dose of ERT, as the disease

presents with diverse manifestations and many different factors need to be considered

[24]. In order to address these issues, the clinician might have access to a clinical registry

of patients with this medical condition, which contains information as to their ERT doses.

Despite the likely small number of observations, which is to be expected for a rare disease

registry, a machine learning approach could be used to deliver dose predictions, ideally

leveraging all available data, leading to a small data challenge.

When the clinician has a new patient, for example a 6-year-old child trialling ERT again

after a pause, the machine learning approach should take into account how similar the

new patient is to the patients already present within the clinical registry. Often, there will

be considerable heterogeneity across patients in a registry, which means that the patients

are dissimilar to each other. Therefore, the new patient might need to be matched to the

most similar subgroup to allow for modelling and prediction based on this subgroup, while

still taking some information from the other subgroups into account. In this case, for

example, there might only be a limited subgroup of patients under the age of 10. For

these reasons, it can be difficult to match the current patient to previous patients in order

to make accurate predictions. When the new patient cannot be appropriately matched,

transfer techniques are required to still enable prediction modelling by at least using some

amount of information, e.g., by extrapolating across age groups.

Box 1: Hypothetical exemplary scenario from the field of rare disease small data applications.

2.2 Limitations of big data and the problem of the ‘average man’

One key limitation of big data approaches is data availability: in many contexts, large datasets

are simply not available, especially in specialised fields like rare diseases (see Box 1 for an

exemplary scenario, and Section 3.1 for more details) or nichemarkets. Small data approaches,

on the other hand, thrive on detailed, context-specific information from smaller datasets, making

them invaluable where data is scarce.

A second key limitation of big data approaches is the mythology surrounding them, in particular,

the assumption that bigger datasets lead to more reliable conclusions. The belief that ‘bigger is

better’, where traditional approaches in business, governance, and technology prioritise large

numbers, goes hand in hand with advancements in computing andAI, which excel at processing

vast amounts of information but often falter when confronted with extreme values (Figure 1,

Panel A) and unique scenarios (Figure 1, Panel B). For instance, AI models for self-driving cars

have shown critical failures when confronted with unexpected situations, such as encountering

a backward-propelled wheelchair, even when trained extensively on wheelchair-representative

datasets [25].
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Figure 1: Conceptual illustration of small data challenges with hypothetical data where indi-

viduals are described by two dimensions, such as when considering factors “age” and “years

of experience with digital technologies” when designing a chatbot system based on large lan-

guage models (LLMs). (A) Small data conceptualised as the extreme values of a distribution,

e.g., a Gaussian distribution, corresponding to the concept of Quetelet [26]. In this figure, the

individuals in the “Focus” area are within the average, whereas individuals that deviate from

this average are considered less often or not at all. (B) Conceptualisation of small data via

subgroups of individuals which might be described by their own distribution, e.g., not treating

children as small adults, or analysing the specific needs of elderly users.

This highlights how big data approaches, which can be useful for identifying general trends

within large datasets, might obscure the nuances and specificity present in smaller datasets,

which might cover a more diverse range of scenarios. Consequently, individuals and scenarios

that do not fit the majority pattern are marginalised, leading to significant knowledge gaps and

inadequately addressed needs. When these approaches are used for policy decisions, this can

lead to ineffective, inefficient and inequitable decision-making.

The necessity of considering alternatives to big data approaches becomes even more apparent

when knowledge of the historical context of statistical methodologies is applied to human pop-

ulations and social phenomena. Specifically, the concept of the ‘average man’ was introduced

in the 19th century by Belgian astronomer and statistician Adolphe Quetelet FRS. Quetelet’s

work laid the foundation for modern statistics and the field of social physics, which applies sta-

tistical methods to social phenomena. In his pivotal work, Quetelet proposed the idea of the

‘average man’ (‘l’homme moyen’), a hypothetical individual whose characteristics represent the

average values of a population’s various traits. He applied the Gaussian distribution, which had

been used primarily in astronomy and other physical sciences, to human traits. In doing so,

he suggested that most people cluster around a central, average value, with fewer individuals

exhibiting extreme values at the margins.
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Quetelet’s concept had profound implications for modern statistics and social science. First, it

introduced the idea that human characteristics, such as height, weight, and even behaviours,

could be quantified and analysed statistically. Second, Quetelet asserted that the average value

within a distribution (the l’homme moyen) should be the primary focus when studying human

attributes [26]. This idea laid the groundwork for the development of fields like demography,

public health, and social statistics. However, it also led to an overemphasis on the average,

sometimes at the expense of understanding the diversity and complexity of human population,

neglecting those who fall outside the norm. This is illustrated in Figure 1, Panel A.

As an alternative conceptualisation, small groups might not be considered as the extreme mar-

gins of a Gaussian distribution, but as having their own, separate distribution (1, Panel B). This

implies the need to reason about these distributions, which is made difficult by limited availability

of data. A solution is to assess to what extent information from the majority distribution or other

subgroups can be adapted.

The implications of Quetelet’s work are still evident today with the reliance on averages to use

big data in decision making and policy making. However, it is important to remember that

“…people are individual people and not an average” [27]. While averages can provide useful

summaries, they also mask important variations and lead to decisions that do not adequately

address the necessities of all individuals, particularly those with less common traits or needs.

This has led to a growing recognition of the importance of small data and personalised ap-

proaches that can capture the unique and diverse experiences of individuals, thereby fostering

more inclusive and effective political and technological solutions, ultimately benefiting the entire

population.

An example of this is closed captioning [28], which was initially developed for the deaf and

hard of hearing, however is now widely used in noisy environments like gyms and bars, and by

individuals learning new languages or trying to follow along without sound. Similarly, automatic

doors [29], Text-to-speech (TTS) and Speech-to-text (STT) systems [30], voice assistants [31]

likeAmazon’sAlexa andApple’s Siri, as well as smartphone accessibility features [32] were also

originally designed to assist disabled people but have developed amuch wider scope given their

convenience and ease of use in various situations.

2.3 The rise of small data

In an era where big data dominates decision-making, small data, which focuses on detailed,

context-specific information from smaller datasets, offers unique and critical insights.

Small data is sometimes referred to as the ‘original data’: early-modern scientific discoveries,

from those of Darwin’s evolutionary theory to Einstein’s fundamental laws, predate big data

approaches and contemporary computational abilities. Humans are also naturally small data

learners: given a single image of a car, children can generalise the concept and recognise

similar objects. This is an impressive example of one-shot learning, i.e., learning a class from a
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Glossary: Foundation models are large-scale machine learning models trained on vast

amounts of diverse data, allowing them to serve as a general-purpose base for a wide

range of downstream tasks. These models, such as large language models (LLMs) and

multimodal AI systems, acquire broad representations that can be adapted to more spe-

cific applications with limited available data through fine-tuning or in-context learning.

These capabilites make them a powerful tool for both big and small data settings.

single labelled example, which is not straightforward to obtain with classical machine learning

approaches [33]. Therefore, it might be attractive to utilise small data ideas also in big data

contexts. Certain methodologies already have integrated small data with big data to transfer

information between the big dataset and the small dataset. For example, foundation models

now allow the transfer of information from a huge body of text, images, or other data to settings

with limited data [34] (see Box 2 for an exemplary scenario).

Consequently, small data is (re-)emerging as a crucial complement to big data, in part because

of its relevance to advances in technologies like AI. This approach is particularly important in

areas where context-specific insights are critical, such as in rare disease research (see Box 1),

and personalised marketing strategies (see Box 3).

Suppose a policymaker in a large tech company aims to improve the security and robust-

ness of the company’s software products against cybersecurity threats, e.g., in accor-

dance with a report recently published by the White House Office of the National Cyber

Director [35]. To achieve this, they focus on addressing known classes of vulnerabilities

through use of secure software development practices. The most commonly used pro-

gramming language for the company’s products is C++, which is also one of the languages

that lacks memory safety [36]. In addition, the policymaker knows that it is common prac-

tice among developers in their company to use LLM-based products for assistance when

generating code. While recent versions of C++ allow for memory-safe programming, the

C++ code used to train LLMs is likely to span several decades, i.e., represent old non-safe

practices with potential memory safety bugs [37]. Thus, the challenge would be to use lim-

ited amounts of memory-safe examples of code available to generate via the LLM further

memory-safe code for the requested task. Ideally, there would be a similarity metric to

assess different LLMs and determine which can best provide this code, in order to select

the best solution. Alternatively, LLMs could be fine-tuned to generate safer code. Users

should at least be provided with a warning if the generated code deviates from the safety

standards of the company, or the model might even be able to more precisely indicate

how confident it is that its output is indeed memory-safe.

Box 2: Hypothetical exemplary scenario from the field of generative AI and foundation models.
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Suppose a finance tech start up (“FinTech”) is developing an app that helps its users make

informed financial decisions by providing them personalised recommendations. As con-

sumer trust is an important factor for the adoption of the product [38], [39], they focus on

a strong adherence to user privacy, in particular, by storing information only on the device

of the user, e.g., a smartphone. In addition, the recommendation algorithm is focused

on data minimisation, by asking the user only for absolutely necessary information and

storing only aggregate data where possible, e.g., only the average proportion of income

spent on rent or eating out. This limits the privacy impact, e.g., in case of a data breach.

To enable precise predictions as a basis for recommendations, missing information that

is still required might be extrapolated from similar users, e.g., from a database of users

who agreed to such use of their data. For example, the prediction algorithm might de-

termine how the individual fits different archetypes, i.e., a student who likes to travel or a

married individual with a stable income and children, using similarity measures. As banks

continue to open up their data to third parties [40], the app should give specific recommen-

dations on retirement planning by transferring the generic recommendation model onto

the specific spending habits of the user provided by the bank. As financial advice, es-

pecially concerning investments, involves uncertainty, which might be increased by data

minimisation, the app should include uncertainty evaluations to help the individuals make

informed decisions about the risks involved, e.g., when deciding for a saving strategy.

The app might even indicate what additional information would be needed to reduce un-

certainty.

Box 3: Hypothetical exemplary scenario from the field of finances and trusted personalised

recommendations.

The growing interest in small data is also driven by advancements in data collection and analysis

technologies that make it easier to gather and interpret more detailed information from smaller

samples. For example, wearable devices, mobile sensors, and specialised software enable the

continuous collection of granular data, data that is very detailed and specific, providing a rich

source of insights that were previously inaccessible [41] (see Box 4).

As another example, mixed-methods research combines quantitative data from large samples

with qualitative insights from smaller groups to provide a more comprehensive understanding

of complex phenomena. This integrative approach is particularly valuable in fields like social

sciences, where understanding human behaviour requires analysis of both broad patterns and

individual experiences. For a primer on these themes see [42]. Small data techniques are also

relevant where limited, granular datasets are collected by individual researchers during day-to-

day experiments, as these datasets may be richly diverse, covering a range of heterogeneous

scenarios, and relatively small, so-called long-tail data [6]. Long-tail data is valued for its di-

versity and specificity, which can provide critical insights that large, aggregated datasets might

overlook.

Furthermore, small data approaches can help foster innovation and resilience in technologies,
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Suppose a healthcare provider aims to decrease the number of hospital admissions re-

sulting from recurrent falls among patients. To do this, they give wearable devices with

accelerometers to individuals [43]. The detection of falls needs to be performed on the

device with the limited data available there. After a period of time, there is enough ac-

celerometer data available for the individual, such as how they normally move, so that

personalisation and thus improved fall detection might be feasible. If the provider has

a database of accelerometer data generated from use of this wearable device, the data

from the individual could be mapped to subgroups of other individuals, or alternatively, a

prediction model could be used that is aware of subgroups and has already been trained

on the database. Ideally, this analysis in the context of similar data should be performed

without transferring the data of individuals to a central server, to protect privacy.

However, fall detection using accelerometer data is challenging due to significant vari-

ability in how movements are recorded, as well as differences in individual anatomy [44],

[45]. This variability might introduce considerable uncertainty in similarity assessment and

predictions. Therefore, approaches for quantifying uncertainty in all steps are needed. In

addition, some of the patients might not like the wearable device, but want to use the ac-

celerometer on their phones instead [46]. This means that information transfer is required

to link this new data type to the original datasets and models.

Box 4: Hypothetical exemplary scenario from the field of assistive technologies.

as they specifically acknowledge subgroups, potentially in a wide range of scenarios, making

themmore robust in the face of dynamic environments. Thus, personalised and context-specific

technology solutions will rely on the utilisation and inclusion of small data.

2.4 Common themes: similarity, transfer, and uncertainty

For making small data challenges manageable, it can be useful to identify sub-tasks that ap-

pear in many small data settings. In the examples given above (in particular Boxes 1-4), there

were three themes that repeatedly emerged: similarity, transfer, and uncertainty. These are

illustrated in Figure 2, and are briefly introduced in the following. A detailed description of the

corresponding technical approaches is provided in Section 4.

2.4.1 Similarity

Similarity is relevant when comparing different datasets for potential subsequent integration.

Integrating datasets increases the number of observations available for modelling, and involves

assessing the similarity of individuals to other individuals or groups of individuals, such as in rare

disease applications, to leverage evidence from similar individuals. In other settings, similarity

of datasets that include several observational units needs to be assessed, e.g., when deciding

whether to combine datasets for modelling. As similarity will typically be assessed quantitatively,

modelling techniques that are subsequently used also need to incorporate such quantitative

information on similarity.
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Figure 2: Illustration of common themes, namely similarity, transfer, and uncertainty, when

addressing small data challenges. The example uses hypothetical data where individuals are

described by two dimensions, such as when considering factors “age” and “years of experience

with digital technologies” when designing a chatbot system based on LLMs. (A) Assessing

the similarity of groups for potentially incorporating information, e.g., deciding whether to jointly

analyse data from children and older adults when considering inclusive chatbot design. (B)

More general information transfer, when data/information cannot be directly combined, e.g.,

leveraging child-centered user experience described in the scientific literature when designing

a chatbot for older adults. (C) Quantifying uncertainty, to assess whether there is enough data

for obtaining reliable evidence, e.g., deciding whether there is enough information to reasonably

tailor a chatbot for children.

When there is already a big dataset or (pre-)trainedmodel, e.g., a foundationmodel, approaches

for similarity can be useful for assessing whether a dataset at hand is close enough to the typical

settings represented by the big dataset or model to warrant use. Subsequent adaptation, when

there is sufficient similarity, might then include personalisation of the model, e.g., by identifying

subgroups represented by the large model that are the most similar to the dataset at hand. This

corresponds to acknowledging the heterogeneity of big datasets and potentially reducing them

into interlinked small datasets.

2.4.2 Transfer

The combination of similar datasets already implicitly entails a transfer of information from one

dataset to the other. Yet, we understand transfer in a broader sense, relating not only to the

transfer of information between similar datasets, but also to a more general information transfer

from external sources to enrich a small dataset. In particular, information from other sources to

be incorporated can include, e.g., other types of data (other data forms, databases, etc., see

Figure 2, Panel B) or pre-trained models (e.g., LLMs), reflecting implicit knowledge, to facilitate

modelling with small data by additional prior knowledge. This requires methods for explicitly

transferring information. Use of methods for transfer ideally should include some quantification

of similarity between the different types of information sources to assess whether information
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transfer indeed is beneficial, or whether it instead is detrimental, e.g., when LLMs override the

information in the dataset at hand that is used as context.

In some settings, knowledge of the domain at hand might not be available in formats ready

for information transfer, such as mechanistic knowledge or heuristic knowledge of experts. A

formalisation step is then required, before information transfer can be performed. For exam-

ple, knowledge on relations between quantities of interest could be expressed in the form of

mathematical equations, even if it is not possible to fully and precisely specify these equations.

Methods for information transfer then need to incorporate the uncertainty in specification.

2.4.3 Uncertainty

Due to limited information, uncertainty is a particularly pressing issue to be considered in small

data settings. While uncertainty has been conventionally considered in the context of variability

in parameter estimation in statistical models, such as when estimating treatment effects, the

term can also be understood in a broader sense. In particular, there are many other kinds

of uncertainties, including general sources of uncertainty in modelling, such as the choice of

appropriate models [47]. Some sources of uncertainty are more specific to small data, particu-

larly uncertainty arising from quantification of similarity and transfer of information, e.g., in the

formalisation of expert knowledge for inclusion into modelling.

Where uncertainty cannot be avoided, comprehensive quantification of the different sources of

uncertainty is needed. This enables informed use of the resulting models and predictions. Such

quantification can also enable deliberate acceptance of uncertainty, e.g., when making informed

decisions on data minimisation for a trade-off between uncertainty and privacy (see Box 3 for

an example).

2.5 Implications of small data for evidence-informed policy-making

The policy implications of small data approaches are significant. During times of financial con-

straint, decision-makers often rely on data-supported strategies to set spending priorities and

justify investments in public funds. However, this reliance can marginalise individuals who do

not fit within the majority, such as those with disabilities or exceptional access requirements

[48].

Likewise, dominant big data research methods prioritise large groups and population averages,

potentially disregarding extreme values and reinforcing the ‘invisibility’ of marginalised groups

when it comes to decision making. For example, research into assistive technologies often

lacks generalisability due to its small, varied sample sizes [49]. Moreover, current big data tools

are not designed to highlight patterns or trends specific to underrepresented groups, instead

amplifying the averages and leaving out critical insights from the margins.

To address these issues, it is essential to recognise that including the margins in research

and design processes can benefit everyone. Moving away from big data approaches towards
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personalised learning and informed, self-aware learners can help create a more equitable and

responsive educational system. Embracing small data and dynamic instability in policymaking

can lead to better outcomes for both individuals and society as a whole.

3 Exemplary application fields of small data

3.1 Rare diseases and N-of-1 studies

Small data methods are crucial for studying rare diseases, i.e., diseases afflicting less than

one in 2,000 persons [50], as this is a prime example for medical conditions with limited data

(see Box 1 for a hypothetical example). Correspondingly, this area has produced numerous

methodologies specifically designed for small datasets. Still, it is a challenge to adapt machine

learning, in particular deep learning techniques, which typically require more data [51]. Nev-

ertheless, such methodological developments can be used as a blueprint for other small data

settings. It is important to note that many of these techniques are not explicitly labelled as small

data methods, even though they apply to these scenarios, reflecting the challenge of the lack

of shared terminology around small data methods.

N-of-1 studies are a particular type of small data study which produce data limited by design,

as they focus on collecting and analysing data from a single participant [52]. This is often per-

formed in order to determine how effectively the participant responds to a specific intervention,

and may involve the need to combine multiple different types of data from the individual, which

requires transfer methodologies. N-of-1 studies are better suited for chronic conditions rather

than rapidly progressive diseases, and commonly deployed to assess neurological or muscu-

loskeletal disease [53]. This is because chronic conditions are often relatively stable or slowly

progressive, and require long term management, which enables multiple crossover periods to

assess efficacy of various treatments on the same patient.

Small data methods can assess medication efficacy, as well as the efficacy from surgical proce-

dures, behavioural modifications, or medical device assessments [54]. These methodologies

can then be applied to similar study designs where only a single participant is assessed. When

aggregating many N-of-1 studies, the combined data could, e.g., be used for future predictions

[55]. Yet, to do this, one must assess how similar the datasets are and develop methods to

combine datasets when they are not in exactly the same format, i.e., tailored approaches are

needed for information transfer.

3.2 Precision medicine and case-based reasoning

Personalisation of models, predictions and decisions in small data settings aims to tailor par-

ticular outcomes to the unique characteristics of a single observational unit or a small group.

In precision or personalised medicine, this involves adapting specific therapies to suit each

individual, accurately diagnosing diseases, or predicting individual health outcomes by taking

into account unique genetic, lifestyle or environmental factors [48]. Effectively, this means that
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even a rather large, potentially multi-modal dataset might be reduced to many small subsets

when looking for homogeneous groups of patients that could receive a personalised prediction.

Therefore, much like in rare disease settings, many methodologies developed in the field of pre-

cision medicine are useful for small data settings, though they are often not explicitly identified

as such. Often, methodologies initially developed for specific diseases are also applicable to

other small data scenarios once researchers recognise similar underlying features.

Oncology has consistently led to advancements in precision medicine, largely because of the

genetic basis of many cancers and the rapid progression of genomic technologies, e.g., allow-

ing for more reliable and affordable cancer diagnosis [49], [56]. These advances enable the

comprehensive screening of an individual’s genome in just days, facilitating the development of

tailored diagnostic, prognostic and therapeutic strategies. Big data analysis is effective at identi-

fying patterns across large datasets, but small data methods are much more adept at tasks such

as detecting rare mutations. Small data methodologies can provide assistance, for example,

in analysing data from an individual’s own cells to predict how they will respond to treatment,

through personalised in vivo and in vitro cancer models [57]. However, this raises many small

data challenges, such as looking for similar data to increase the dataset size, transferring in-

formation from other sources, and assessing the uncertainty, i.e., quantifying the reliability of

predictions from such cancer models.

The paradigm of case-based reasoning (CBR) considers an extremely personalised setting

where the data from the patient at hand, i.e., a single observational unit, is used as a starting

point for reasoning. CBR then offers a modelling methodology for using previous similar ex-

amples of a problem and its solutions, each called a “case”, to offer recommendations for a

current similar issue [58]. This recommendation is then stored for use with future cases, allow-

ing for iterative learning [59]. As for other settings in precision medicine, similarity assessment

is therefore crucial in CBR because the accuracy of the solution depends on the accuracy of the

evaluation of similarity between the new case and stored cases [60]. Furthermore, a machine

learning approach must be able to search for similar cases effectively and time efficiently [58].

Uncertainty needs to be taken into account, as the available information from previous cases

may be incomplete, imprecise, or subjective [61], [62]. It is also beneficial to develop transfer

learning techniques that allow recognition of useful knowledge from other systems, and support

their integration into the CBR model [63].

3.3 Assistive technologies, quantified self, and wearable health devices

The robust pace of advancements in energy-efficient computing and sensor miniaturisation [64]

has enabled wearable devices to become increasingly more capable as assistive technologies.

Continuous use of wearable health devices throughout the day can facilitate novel data-driven

paradigms in healthcare and personal health management by providing real-time, comprehen-

sive data from sensors to enable personalised monitoring, e.g., fall detection (see Box 4), early

detection of health issues, and tailored interventions [65]. In particular, this technology has led to
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a rapidly expanding “quantified self” movement, where individuals use self-tracking to improve

their health and well-being [66]. The corresponding data, although potentially longitudinally ex-

tensive, is similar to rare disease situations, as it pertains to a single individual. In particular,

the devices often do not transfer all recorded data to centralised servers for combined analysis

with data from other individuals. Instead, the recorded data primarily stays on-device and cor-

respondingly analysis is performed there, e.g., in an edge computing solution [67]. If the device

at least intermittently has access to external servers, these can be leveraged for additional in-

formation, e.g., additional data and/or trained models hosted by the manufacturer. However, it

is still desirable to analyse the small data on-device, and use this external information as ad-

ditional context to improve predictions made from the small dataset [68], as these predictions

should still ideally be personalised to the user. This means that some matching to subgroups

represented by the external data is needed, including assessment of similarity and potential

approaches for information transfer. Much like above, this setting is similar to rare disease ap-

plications, yet with the additional complication of having the different sources of information in

different locations. On the device itself, the model based on the larger amount of information

can then be adapted to the user, to reduce the prediction uncertainty [69].

3.4 Data minimisation

Data minimisation, i.e., the collecting and processing of only the data required for a specific

purpose, is a crucial concept that must be taken into account whenever dealing with data from

individuals. Data minimisation is governed by regulations such as the EU General Data Pro-

tection Regulation (GDPR) [70], which also underscores the necessity of informed consent for

collecting data andmandates that models be designed to provide explanations for their decision-

making processes when required [71]. Small data techniques support data minimisation as they

can potentially still achieve acceptable performance with limited data. This allows for deliberate

collection of less data, reducing unnecessary privacy intrusions (see Box 3 for a hypothetical

example). The data of individuals also might not need to be copied to central servers, e.g., as

indicated for applications with wearable devices. Together, this lowers the risk of unintended

data leaks [72], [73]. This is helpful in a wide range of scenarios, from medicine to finance,

where data minimisation should be encouraged. Minimisation, as enabled by small data meth-

ods, might even be beneficial for other reasons, as collection and analysis of smaller data is

often cheaper and can be performed with higher quality [1]. Yet, deliberate minimisation re-

quires careful assessment of the resulting uncertainty in order to perform an informed trade-off.

Also, filling in the gaps left by deliberate minimisation by incorporating similar data that is already

available might require development of targeted techniques for information transfer, if there is

only limited similarity between the data to be incorporated and the minimised data.

3.5 Generative AI

LLMs, such as that behind ChatGPT, are an example of foundationmodels, the latest generation

of generative AI approaches which provide general representations learned from large-scale
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Glossary: In-context learning allows large language models (LLMs), and more gener-

ally foundation models, to perform new tasks without retraining by providing task-specific

context information, e.g., prompt text that includes examples, as part of the input during in-

ference. Unlike traditional learning methods that require extensive fine-tuning, in-context

learning enables LLMs to adapt dynamically to new problems by interpreting the provided

context. For example, when tasked with translating a sentence or generating a summary,

the model can infer an appropriate approach based on the information contained in the

query itself. This capability has significant implications for rapid prototyping and adapt-

ability in real-world applications.

datasets [34]. Correspondingly, they are adaptable for a wide range of creative tasks, such

as generating artwork [74], [75] or music [76], [77], as well as practical tasks such as data

augmentation, text generation, and image synthesis [78]–[80]. They can also be applied to fields

such as biology or medicine [81]–[83]. Once tailored to a specific scenario, such foundation

models can be used to simulate and explore hypothetical situations, even with limited real data

available. This ability to generate synthetic data based on a learned structure, combined with

expert insights or established knowledge from a specific field, is particularly attractive in small

data settings, as it allows for the conversion of additional knowledge into data.

Yet small data problems still arise, as even large-scale datasets have areas that are hardly

covered, e.g., as illustrated in 2. When an LLM is used to generate text pertaining to a part of

the underlying statistical distribution that is only supported by limited data, it might also have a

tendency to hallucinate, which means it fabricates a plausible but incorrect answer [84]. This

setting, where the text used to prompt the LLM corresponds to the small data at hand, while the

LLM represents implicit knowledge from a large-scale dataset, is an example of a more general

class of small data settings where a small dataset is used as context information for in-context

learning with foundation models [85]. Therefore, the challenge is to assess how close the small

data at hand is to the implicit knowledge represented by the foundation model to detect potential

issues with information transfer, such as hallucination in LLMs. Alternatively, foundation models

can be fine-tuned to the small data at hand by adapting the model parameters. However, this

might be challenging with limited data. Even if such an adaptation is not feasible or straightfor-

ward, a model should at least be adapted to warn the user when the provided response is based

on an underrepresented knowledge area. The importance of acknowledging and communicat-

ing underlying uncertainties in models should be considered when formulating policies that rely

on predictions or insights from foundation models, ensuring there is clear communication from

developers on uncertainties and limitations in the model predictions and that policies account

for potential biases, gaps in knowledge and model limitations.
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Glossary: Few-shot learning refers to a method in AI where models are trained to per-

form tasks using only a small number of labeled examples. This technique is especially

useful in scenarios where gathering extensive labeled datasets is impractical, such as

rare medical conditions or highly specific tasks in industrial applications. By leveraging

knowledge from previously seen tasks or datasets, few-shot learning enables models to

generalize effectively, bridging the gap between data-rich and data-scarce environments.

4 Methods for working with small data

4.1 Contributions of different disciplines

Small data problems occur in a broad range of diverse application fields, as illustrated by the

examples of small data presented in Box 1-4 and in Section 3. This diversity in applications

indicates an increasing recognition of the need to develop specific small data approaches that

can be used across different disciplines. Currently, since different small data application sce-

narios are typically addressed by different disciplines, such as computer science, mathematics,

or statistics, there is high diversity in methodology developed to address small data challenges.

This means that small data research is currently scattered across disciplines, impeding the

realisation of its full potential.

A particular challenge is the limited exchange of methods between different data science disci-

plines. For example, mathematics and statistics have been traditionally seen as the disciplines

for small data challenges, as research there has historically been performed in the context of

applications with strong assumptions, which are used to gain mechanistic insight and to com-

pensate for typically small datasets [1]. Take, for instance, infectious disease modelling, where

assumptions regarding disease transmission and recovery rates are employed to predict the

spread of diseases like influenza or COVID-19 when real-time data is scarce [86]. Similarly,

in tumour growth modelling, assumptions about the growth rates and limitations of resources

within the tumour are used to estimate the progression of cancer and optimise treatments with

limited data [87].

Yet, the computer science community has also recently developed important small data tech-

niques. These approaches are typically based on AI, and known under labels such as transfer

learning, few-shot learning or meta-learning, but are only slowly finding their way into other data

science communities [88]. In particular, many of the recent innovations in generative AI have

considerable potential for small data challenges, but are currently scarcely discussed within

this context. Conversely, even though the benefits of incorporating assumptions and domain

knowledge into AI approaches are increasingly recognised (e.g., [89]–[92]), the modelling ex-

pertise in the statistics and mathematics community is only slowly being incorporated in current

AI approaches developed in computer science.
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Glossary: Meta-learning, often referred to as “learning to learn”, trains models to adapt

to new tasks using prior knowledge from multiple datasets. Instead of building a single

model optimized for a specific task, meta learning equips the model with a generalized

capability to handle diverse problems. This approach is particularly relevant in small data

contexts, where the ability to leverage knowledge from related domains can significantly

enhance performance.

Small data applications typically also require strong domain knowledge, but domain experts

often do not have access to state-of-the-art small data methods. Even though such connections

between disciplines are increasingly recognised and needed, it also becomes apparent that they

are often obscured by the lack of a common language [14]. This is particularly relevant with

respect to small data methods, as none of the disciplines have developed a comprehensive

small data framework. Clarification and mutual understanding of relevant terminology could

remove hurdles and be a first step towards such a shared framework and language across

disciplines.

To achieve this, it is essential to reflect on the contributions of the different disciplines to current

small data methods. Firstly, we will present relevant small data approaches used in different

communities, including corresponding terminology. We begin by giving a brief overview of the

contributions of disciplines and methods developed there to the small data themes similarity,

transfer and uncertainty outlined in Section 2.4, before going into more detail on selected spe-

cific classes of methods and approaches.

4.2 Similarity

Quantifying and incorporating similarity into modelling has traditionally been dealt with exten-

sively in the statistics community. For example, approaches for matching [93] and re-weighting

individuals [94], [95], allow researchers to make different groups more comparable, or to in-

tegrate information from other groups when focusing on a specific subgroup [96], [97]. The

concept of localised regression [98] allows researchers to make models, such as regression

models, specific to individuals, and can be extended to more flexible nonparametric approaches

[99]. Further, approaches for quantifying the similarity of fitted models [100], [101] can be lever-

aged for assessing the similarity of different groups, e.g., in models for clinical time-to-event

data of rather small patient groups [102], [103]. Dissimilarity of groups of individuals is also

considered in meta-analysis techniques, developed in clinical biostatistics, which allow for the

estimation of overall treatment effects across several clinical trials. Differences at the dataset

level can also be taken into account by re-calibrating existing models to local conditions [104].

Methods for taking into account heterogeneity due to dissimilarity have also been developed

for prediction tasks [105], and there have been suggestions for quantifying similarity in such

settings [106], [107].
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Glossary: Representation learning focuses on transforming raw input data into com-

pact, meaningful representations that capture the essential features and patterns within

the data. These representations make it easier for downstream tasks, such as classifica-

tion or clustering, to identify underlying relationships. Techniques like autoencoder deep

neural networks are commonly used to uncover these representations, which are partic-

ularly valuable in small data settings. For example, in image recognition, representation

learning can distil critical features like edges and textures into an efficient format, enabling

accurate predictions with limited training samples.

Glossary: Neuro-symbolic AI combines the pattern recognition capabilities of neural

networks with the structured reasoning of symbolic AI. This hybrid approach aims to ad-

dress the limitations of purely neural or symbolic systems by integrating data-driven learn-

ing with explicit knowledge representation and reasoning. Neuro-symbolic AI enables

systems to reason logically about their predictions while handling complex, unstructured

data like images or text.

From a computer science perspective, similarity can also be learned from data, called metric

learning [108]–[111]. Neural networks can also be used for learning a potentially complex map-

ping into a latent space where similarity can be quantified (e.g., [112], [113]). For incorporating

similarity at the dataset level, so-called dataset meta features can be leveraged in meta-learning

approaches [114].

4.3 Transfer

Approaches for information transfer have been primarily driven by the computer science com-

munity and will be presented in more detail in the following subsections. Such approaches

incorporate techniques for transferring information from trained models via pre-training and fine-

tuning strategies, or specifically in the context of LLMs, via techniques for retrieval-augmented

generation and in-context learning. More generally, transferring knowledge based on a repre-

sentation learned from data is enabled by approaches in the field of representation learning.

This includes techniques for few-shot learning, where a model is trained to perform tasks with

very limited training examples.

Another strategy to transfer information is to incorporate explicit knowledge. Corresponding

approaches are developed in the field of neuro-symbolic AI for incorporating knowledge, e.g.,

represented by mathematical equations or logical systems. More generally, approaches for

combining knowledge-driven and data-driven modelling enable AI-based models to leverage

such explicit knowledge, e.g., encoded in differential equations.
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4.4 Uncertainty

The topic of uncertainty is at the core of mathematical and applied statistics, e.g., when providing

uncertainty of estimates in statistical models via confidence intervals. Quantifying uncertainty

is also a crucial aspect of (network) meta-analysis [115]. The need to quantify uncertainty of

model parameters can also be extended to modelling techniques such as differential equations

that might be used for incorporating knowledge [116]. Beyond parameter estimation, the need

to quantify uncertainty more broadly encompasses uncertainty in model prediction, as well as

in optimisation strategy and hyperparameter tuning [117]–[119]. The latter is of particular rel-

evance in AI-based models, which heavily rely on such hyperparameters to optimise perfor-

mance. An important class of approaches for reducing uncertainty by learning across many

datasets is provided by ensemble methods and specifically meta-learning.

4.5 Foundation models

As introduced briefly in Section 2, foundation models and in particular LLMs have opened a

new era of generative AI, as they provide powerful representations adaptable to a wide range of

tasks and applications [34]. Typically, they have many parameters (billions or even hundreds of

billions) and are first trained on large datasets to learn a general representation. This is referred

to as pre-training, while subsequently adjusting themodel to a task-specific, potentially a smaller

target dataset of interest, is called fine-tuning. Such a pre-training and fine-tuning strategy is a

prototypical example of information transfer that may be helpful in small data settings, e.g., if a

pre-trained model can be fine-tuned on the small target dataset at hand.

To avoid the need for large amounts of manually annotated training data, foundation models

are often trained in a self-supervised or weakly supervised fashion [120]. In self-supervised

training, labelled samples are derived from the input data itself, e.g., by predicting a part of the

input from other parts or by reconstructing the original input after random perturbation [121],

[122]. Weak supervision means training on noisy or only partially labelled samples that can be

generated in an automated way [122].

Foundation models are typically based on a transformer neural network architecture [123].

Transformers have originally been developed for natural language processing (NLP) tasks, such

as sentiment classification, text summarization, question answering or translation. They lever-

age the concept of self-attention to learn the patterns that underlie given input sequences, such

as sentences. Even though their core architecture is not inherently generative, transformers

can be adapted to generative tasks by combining them with additional components such as

autoregressive decoding [124], where the model generates one word at a time conditional on

previously generated words. Alternatively, they can be used within a generative adversarial

setup for text generation tasks with transformers as generator and discriminator components

(e.g., [125]–[128]). This technique is leveraged, for example, in the GPT models (generative

pre-trained transformer), a series of autoregressive language models that form the backbone

of ChatGPT [129], [130]. Another prominent example of a language foundation model based
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on transformers is BERT (bidirectional encoder representations from transformers) [131], which

has also been adapted for other applications, e.g., for protein structure prediction [132].

The data that can be generated with such models is not limited to text. For example, foundation

models and transformers have found their way into a wide range of data types and applications,

including image [133], [134] and audio data [76], [77]. They have even been extended across

multiple modalities [78]–[80]. A well-known example are image generators such as DALL-E

[74], [75], where images are generated based on a text prompt entered by the user. Notably,

transformer-based foundation models even enable the generation of tabular data, such as data

collected from individuals, e.g., customers, study participants, or patients. For example, prior-

data fitted networks [135] leverage a transformer architecture for training on a large number

of synthetic tabular datasets and subsequently perform inference on a potentially small real-

world target dataset without re-training [135]–[137]. Such foundation models for synthetic data

are particularly interesting from a small data perspective, as they leverage synthetic data as

prior knowledge, which allows the minimization of training data, in line with data minimisation

principles.

4.6 Representation learning, in-context learning, and few-shot learning

Many generative AI approaches can be considered a form of representation learning. This

means that they learn to embed the input data into a meaningful representation, which captures

its underlying patterns and structure and allows for generating new data based on the represen-

tation. Such representation learning is closely linked to transfer learning, as the learned rep-

resentation allows researchers to generalise different information sources, as well as datasets,

and transfer information between them. For example, such a representation enables information

transfer from the dataset used for pre-training to a target dataset of interest, or even between

different data modalities (e.g., in multi-modal foundation models).

A powerful representation is also a key feature of in-context learning. In-context learning per-

forms a new task based on a small set of examples presented within the context (the prompt)

at inference time [85]. This property is found in particular in LLMs, where demonstrations of

the task are provided to the model as part of the prompt (in natural language). This enables

application on novel tasks without the need for fine-tuning the LLM. Further, it may enable use

of LLMs in small data settings, where in-context learning can be used to tailor the pre-trained

LLM to the small data task at hand.

Another strategy to tailor LLMs to a specific task of interest based on a learned representation is

retrieval-augmented generation. Here, an LLM is linked to an external data source or knowledge

base to include additional information [138]–[140]. This enables information transfer between

the external knowledge base and the LLM representation, and thus can also be a strategy for

leveraging the power of LLMs for small data settings. The idea of including knowledge into a

data-driven model such as an LLM is tightly linked to principles of neuro-symbolic AI and more

generally combining data-driven and knowledge-driven modelling, as explained in more detail
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below.

Few-shot learning techniques can be employed when a small dataset at hand, comprising only

few observations, has a similar format as the data used for training a large-scale model. Few-

shot learning mimics humans’ ability to learn tasks after having seen only a few samples. The

aim is to leverage the representation obtained from a larger dataset to aid in making predictions

for a smaller target set [108]. Similarly to the setting of in-context learning, a few-shot approach

is able to make predictions for a new task not seen earlier during training by reasoning only from

a few examples (analogous to the context) provided during inference. In this case, the context

is given by the observations of the few-shot task.

Few-shot learning is an attractive tool for tackling small data challenges, as it aims to optimise

performance when training data is scarce. For example, research in few-shot learning focuses

on how to best extract features from training data, such that the model can learn a feature space

that also covers the subsequent few-shot tasks, i.e., aiming to find an optimal representation

for generalising to the few-shot tasks. The representation should further be structured such

that training on the subsequent task should not lead to forgetting critical structure from previous

trainings [141]. In small data situations, few-shot methods also allow for increasing the set of

examples used for training (with data augmentation or generative approaches) or transferring

knowledge from prior learning [142], also across domains. For example, in cross-modal few-

shot learning, large-scale public image databases such as ImageNet [143] are leveraged for

the few-shot task of medical image diagnosis challenges [144]–[147].

4.7 Meta-learning

Meta-learning refers to a set of approaches that allow for sharing information between several

(potentially small) datasets. Such information transfer can, e.g., occur via hyperparameters,

neural network architectures, or other meta-parameters, such as initial values of model pa-

rameters. Meta-learning approaches then aim to train a model jointly on several datasets so

that it can be fine-tuned quickly for new tasks with few examples [148], [149]. Specifically,

prior knowledge is extracted from a meta-dataset of several different datasets and/or tasks and

subsequently leveraged to fine-tune on a separate target dataset. This strategy has been par-

ticularly successful for joint meta-learning of prediction models [148], [150]. As several datasets

are incorporated at once, typically less fine-tuning is required on the target dataset [151], which

is particularly attractive when the target dataset is small.

However, a necessary condition for meta-learning is that source and target datasets are not

too dissimilar. To address this, meta-learning can be combined with similarity techniques for

quantifying and incorporating the similarity of datasets, e.g., via dataset meta-features, i.e.,

characteristics of the target dataset. For example, auxiliary neural networks have been used

for generating such dataset meta-features for tabular datasets [114].
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4.8 Knowledge-driven modelling

In many real-world applications, a substantial body of knowledge about the subject at hand may

already be available, e.g., the specialist knowledge of domain experts or knowledge encoded in

rules, systems, or mathematical equations. Knowledge-driven modelling or the incorporation of

such existing prior knowledge into modelling may allow for the reduction of the amount of extra

data needed and is thus particularly attractive for small data scenarios.

This idea has been at the core of much of the research in statistics and mathematical statistics,

meaning that these disciplines are a key contributor to small data methodologies [1]. There has

been a recent surge in research in these disciplines, for infusing this broad small data expertise

into settings where big data techniques need to be adapted to small data settings. This is com-

plemented by developments in computer science, where ideas of knowledge driven-modelling

are, e.g., reflected in neuro-symbolic AI. This approach combines data-driven modelling by

neural networks with symbolic AI techniques, which rely on a symbolic representation of ex-

plicit knowledge and logical reasoning, e.g., leveraging expert systems, rule-based systems

designed to mimic the decision-making capabilities of a human domain expert, logic program-

ming, semantic web techniques, or planning and scheduling systems [152]–[154].

In contrast to neural networks, which are powerful for learning complex patterns from data but

are inherently opaque and difficult to interpret, such symbolic AI techniques can provide greater

transparency, explainability, and verifiability and therefore increase trustworthiness. Neuro-

symbolic AI aims to integrate these two paradigms and combine their respective strengths to

provide hybrid tools that integrate reasoning and learning from data in an efficient and trans-

parent way [154], [155]. Thus, they can provide more explainable AI approaches and allow for

incorporating prior knowledge into learning [155]. These properties may be particularly desir-

able in sensitive applications where explainability is especially important, such as in precision

medicine, or for policymaking in general.

As indicated, knowledge-driven modelling is a dominant paradigm in statistics and many ar-

eas of mathematics and physics. Here, research often builds on a strong body of prior knowl-

edge, which is typically reflected in strong modelling assumptions, e.g., in statistics, when pre-

specifying the structure of a regression model for assessing treatment effects in a clinical trial.

Similarly, in physics or systems biology, temporal dynamics are typically modelled by differential

equations that are defined based on domain knowledge, e.g., about the relevant interactions

and regulatory processes to describe a small set of molecular or cellular quantities [156]. For

building on such knowledge-driven modelling tools, while allowing for additional flexibility, they

can be combined with flexible, general-purpose data-driven modelling techniques that require

less specific domain knowledge [157], promising tools that are more data-efficient, and at the

same time more interpretable. For example, neural differential equations [158], [159] integrate

mechanistic knowledge into neural networks by combining them with differential equations, thus

directly combining data-driven and knowledge-driven modelling. More generally, neural net-
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works can be used as components to replace parts of a mechanistic model, such as a system

of differential equation systems that cannot be fully specified [160], [161]. From a technical

perspective, such approaches are often based on the paradigm of differentiable programming,

which generally allows the integration of modelling components from different communities, e.g.,

machine learning and scientific computing [162].

When knowledge on a subject of interest is specific enough that it can be phrased in terms of a

prior distribution for a parameter in a model, statistical modelling provides a rich set of Bayesian

techniques for model building and evaluation [163]. Yet, when such a precise specification is

not feasible, but knowledge still is available in the form of models, there are other ways for in-

corporating such knowledge, e.g., by augmenting the original data with data from the model,

post-filtering [164], domain adaptation [165], or regularization [166]. Pre-existing knowledge

can also be incorporated based on expert input in the form of probabilistic relationships of vari-

ables [167]. Approaches for incorporating knowledge into machine learning have been more

generally investigated and categorised under the label “informed machine learning” [168], also

with specific developments for other application domains, such as physics [169].

4.9 General challenges

4.9.1 Overfitting

Training models on limited data incurs the risk of overfitting, i.e., when the model has learned

characteristics unique to the limited training data and is aligned too closely to it, but does not

generalise to other datasets. While overfitting can also occur in large datasets, small data set-

tings are particularly prone to it due to the limited information available. With fewer data points,

there may not be enough diversity to cover a wide range of situations, making it more likely that

the model will pick up noise or specific patterns that do not generalise [170, p. 108–114].

A related problem can occur when the observations fall into several categories, and some cat-

egories are represented more often than others. For example, in a longitudinal clinical dataset

on a severe chronic disease, there might be more patients with comorbidities than without, i.e.,

the presence of comorbidities is overrepresented. The model is then biased towards predicting

the more prevalent class, leading to overrepresentation, or may fail to predict the minority class,

leading to underrepresentation [171]. In small data settings, there may simply not be enough

data points within a singular class in order to properly assess it.

When models are based on historical data, that is, data that was collected in the past, there is

no guarantee that this data will remain in this form over time, or is the same in other datasets

[172]. Potentially necessary adaptation could again be based on approaches for similarity and

transfer.
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4.9.2 Validation

When developing amodel on a specific dataset of interest, the data is typically split into a dataset

for training the model and a second dataset for testing the model [173]. Sometimes, when

training the model, data from the test dataset is accidentally used during the training process.

This phenomenon is known as data leakage. While this is an issue for both big data and small

data, it tends to have more pronounced and unpredictable effects on small datasets compared

to larger ones [174]. Because the datasets are so small, this can lead to an overestimation of

model accuracy, a decrease in its ability to generalise to new data (known as generalisability),

and the introduction of bias.

After internal validation, models need to go through external validation to see whether the results

are generalisable to other, similar datasets [175]. In a small data scenario, this might be rather

challenging to realise if there is no sufficient external data available, or if only dissimilar data is

available. Assessment and incorporation of similarity is therefore crucial. To remove hurdles,

policies should facilitate streamlined data exchange and recommend the creation of data in

accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles [176] to

enable joint use of similar datasets for validation, or already for model development.

5 Conclusions and future perspectives

In an increasingly data-centric world, it is important to make full use of new technologies, such

as AI techniques. As shown, the potential benefits are not limited to big data settings, but in

particular small data settings can benefit and also need more attention, e.g., to adequately

serve underrepresented groups. Novel data analysis and modelling techniques for small data

settings can then complement technical developments, such as in assistive technologies, to

realise their full potential.

We have provided a variety of case studies and application settings not only to highlight the

broad applicability of small data solutions, but also to show the potential from areas where small

data techniques are more established, e.g., for rare diseases, to those where the potential is

apparent but techniques still need to be established.

However, a wide range of applications, each with contributions from many stakeholders and

academic disciplines, runs the risk of confusing newcomers and reinventing the wheel. To

enable sufficient communication across disciplines, a shared language is needed as a first step

towards a joint small data framework. This motivated us to jointly present ideas from different

disciplines, such as the ‘average man’ from the social sciences, transfer learning from computer

science, and the quantification of similarity and uncertainty from statistics and mathematics.

As the common themes of similarity, transfer, and uncertainty may be more generally useful

for structuring the field of small data methods, we have provided an overview of how these

themes are approached by the different disciplines, including links between them. Hopefully, this
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will stimulate the fusion of knowledge-driven approaches, as traditionally used in statistics and

mathematics, and data-driven approaches, as now prominently established with deep learning

techniques in computer science. Such a fusion could be the key to unlocking AI techniques for

small data settings. As method development in different disciplines is currently rather siloed,

further investment may be warranted to gain commitment from different disciplines and allow for

the development of common methods, as well as analysis of barriers to interdisciplinary small

data research.

As an example of a specific technique that could be considered a starting point for such en-

deavours, foundation models, such as LLMs, appear to be a particularly promising approach

for bringing additional information to small data sets. As described, there is currently a vi-

brant community developing foundation models for different fields, and training/fine-tuning ap-

proaches that can incorporate many different types of data and models. This flexibility could

also offer an avenue for contributions from different disciplines, where disciplines focused on

knowledge-driven approaches could, for example, provide knowledge in the form of synthetic

data that can then be ingested by data-driven approaches. Of course, this will also depend on

establishing a shared language and a forum where different disciplines can develop a common

understanding in order to make the best use of different expertise.

Developments in the methods community must be accompanied by a strong push to expand its

application across more fields. So far, many assume that fields which cannot offer big data are

cut off from novel methods, such asAI. Therefore, it is of prime importance to raise awareness for

the opportunities of small data. One way this could be achieved is through dedicated initiatives

that bring together all stakeholders. This would also be critical for ensuring feedback from the

specific application fields into the broader methodological community, for steering the small data

field in the right direction, and for realising the full potential of small data in everyday life.
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