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Executive summary 

Context
This synthesis presents the evidence of the 
impact of micoplastics on animals and humans, 
focusing on freshwater and soil environments, 
and identifies the most significant gaps in the 
evidence for future study.

Plastics have been gaining increased public 
attention due to a growing awareness of their 
impact on the natural environment. Political 
interest has mirrored public concern, with a 
number of policy measures introduced within 
the last few years to target plastic pollution in 
the UK, EU and internationally.

Despite this heightened profile, there is 
relatively little scientific evidence on the impacts 
of microplastics in the environment. Much of the 
research on plastics, including microplastics, 
has been in the marine environment and within 
the last few years. Therefore, while this topic 
is now seen as a priority and is increasingly 
being studied, research into the impacts of 
microplastics, especially in freshwater and soil, 
is still in its infancy. Major evidence gaps remain. 
This lack of knowledge is combined with the 
fact that plastics are persistent environmental 
pollutants and their use and subsequent 
presence in the environment is increasing.

This report considers three potential types 
of impact of microplastics on animals: direct 
physical harm caused by microplastics; 
harm caused by chemicals leaching 
from microplastics; and the potential for 
microplastics to act as a vector for other 
pollutants already in the environment and to 
transport these pollutants into animals. The 
report also considers potential impacts on 
human health.

Summary of findings
Our findings present a mixed picture due to 
the fact that significant evidence gaps exist 
in some areas. Moreover, where evidence 
does exist it is sometimes contradictory and/
or based on results from laboratory studies 
using unrealistically high concentrations of 
microplastic and therefore difficult to translate 
to actual exposure in real-world environments1. 
This makes interpretation complicated and 
we have tried to caveat our findings as best 
as possible.

Despite these evidence gaps and the 
limitations with the published literature, the 
evidence does suggest that microplastics 
could cause harm at high concentrations 
and we do not yet know the implications of 
long-term exposure at low concentrations. 
Combined with the fact that once released 
into the environment microplastics are 
persistent, and given the high environmental 
concentrations expected in the future, 
the likelihood of negative consequences 
emerging is high. Without interventions to 
reduce plastic use and move towards a 
more circular economy, it is estimated that 
ecological risks from microplastics may be 
widespread within a century2. However, as with 
all diffuse pollutants, demonstrating significant 
effects in the environment will be difficult and 
even impossible in some cases.
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There is currently a very limited amount of 
research into nanoplastics (which are smaller 
than microplastics), but initial evidence 
suggests that nanoplastics may be a particular 
concern. Laboratory studies, have shown 
that they are capable of entering tissues and 
crossing the blood-brain barrier. However, 
measuring exposure to nanoplastics in natural 
environments is very challenging due to 
their size so we do not yet understand real-
world concentrations and impacts. Given that 
almost all plastics will gradually degrade into 
smaller and smaller micro and then nano sized 
particles, there is a risk that these particular 
impacts could increase in the future.

Direct impacts of microplastics on animals
There is evidence demonstrating the presence 
of microplastics in freshwater and soil 
environments and within the organisms that 
inhabit them3 – 6, as well as in humans and the 
human diet7, 8. 

For example, studies have demonstrated that 
33% of roach sampled in the River Thames 
contain microplastics9 and that animals such 
as earthworms10 – 12, mice13, and ducks14 ingest 
microplastics. The likelihood that microplastics 
will be ingested by an organism seems to 
relate to its ability to distinguish between 
microplastics and actual food sources. 
Microplastics are found predominantly in the 
gut of animals, with a few examples of them 
passing into tissues or other organs at very 
high concentrations. 

Laboratory studies have shown that the 
presence of microplastics in animals can affect 
their behaviour in a range of ways. Examples 
include decreased feeding (due to a false 
feeling of satiation), decreased movement, and 
increased buoyancy which affects feeding and 
swimming behaviour. 

A reduction in feeding success following 
exposure to microplastics has been observed 
in a number of species, including fish15 – 17 and 
crustaceans18, 19. Microplastics can also cause 
physical damage to animals, for example to 
the mouth cavity20 or internal organs such 
as the gut, liver21 – 25 or stomach due to gut 
blockages26, 27 (Figure 1). However, we do 
not know how much microplastics contribute 
to these negative effects relative to other 
non-digestible suspended organic matter 
and debris. Also, as we have noted, the 
applicability of these high-concentration 
laboratory studies to real-world environments 
is not straightforward. 

Fluorescent microplastic in the stomach 
of an adult mosquito glows green under a 
microscope. Researchers found an average 
of 40 microplastic particles in the belly of 
each adult mosquito they studied28. 
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There is a need to formulate viable and testable 
hypotheses to address current knowledge 
gaps. For example, whilst some have suggested 
that microplastics may have wider effects on 
whole populations or ecosystems – such as gut 
blockages in worms subsequently affecting soil 
structure and plant growth29 – there are currently 
few studies that explore these systems-level 
effects in any detail. 

Microplastics and chemicals
This synthesis examines both the impact of 
chemicals added to microplastics, and the impact 
of pollutants already in the environment that bind 
to microplastics. 

Chemicals such as bisphenol A (BPA) and 
phthalates are routinely added to plastics 
during the manufacturing process to improve 
its strength and flexibility. It is widely known 
that these chemicals can be harmful to humans 
and animals at high concentrations. Effects 
of phthalates and BPA mostly relate to the 
functioning of hormones, leading to negative 
effects on reproduction and development30, 

31. Both amphibians and crustaceans appear 
to be particularly sensitive to the presence of 
chemicals in freshwater. However, it is not yet 
clear how significant a role microplastics play in 
contributing to exposure to these chemicals in 
freshwater and soil.

Microplastics may also act as a vector for 
chemical pollutants and pathogens. Whilst 
we know that these pollutants do bind to 
microplastics, what is less clear is whether they 
have the potential to leave the microplastic 
once inside the animal or whether they just 
pass straight through32 – 34.

Some research suggests that pollutants can be 
released from microplastics inside organisms, 
particularly in laboratory conditions where 
high concentrations are used35 – 46. Other 
research suggests that the microplastics 
themselves are such an attractive surface for 
hydrophobic pollutants that these pollutants 

are very unlikely to leave the plastics whilst 
inside an organism47 – 59 and that microplastics 
may even have a detoxifying effect. Whether 
or not a chemical pollutant is released 
from the microplastics is likely to be very 
context dependent. It might depend the 
type of pollutant, the type and shape of the 
microplastic particle, the type of animal, and 
the experimental concentrations. It is not 
known how significant a vector for pollutants 
microplastics might be in freshwater and soil 
environments when compared to organic 
debris or normal food sources such as 
plankton or sediment60, nor how this compares 
to the risk of direct exposure to pollutants. 
Further research is required and in an 
environmentally realistic context before any 
firm conclusions can be drawn.

Priorities for research and next steps
As well as synthesising the available evidence, 
we have also highlighted the evidence gaps. 
Most significant among these is the lack of 
research into the effects of long-term exposure 
to microplastics at environmentally realistic 
concentrations, and the lack of understanding 
of exposure rates in the natural environment. 
As with all diffuse pollutants, measuring 
exposure and demonstrating significant 
effects in the natural environment will be very 
challenging and we do not currently have the 
methods available to do this.

This synthesis does not look at potential 
solutions in detail. It is impossible to 
disentangle the control of microplastics from 
wider plastic debates. Moving towards a more 
circular economy is likely to be the single 
biggest influencer in terms of limiting the 
amount of plastics and therefore microplastics 
in freshwater and soil environments. It is 
likely that this will require a combination of 
regulation, incentives, penalties, voluntary 
agreements and new solutions, as well as 
collaborative and collective action by many 
different countries, industries, sectors and 
government departments.
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