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PREFACE

The Joint Mathematical Council in 1994/95 arranged two seminars to enable discussion about the apparent lack of
articulation between mathematics taught at school and that required by higher education. The second seminar organised by
Professor Margaret Brown, the Chairman of the IMC, and devoted to problems with algebra, took place in January 1995.

As aresult of these seminars aworking group was established under the auspices of the Joint Mathematical Council and The
Royal Society to make recommendations about the teaching of algebra based on an examination of relevant evidence. The
membership of the group was chosen to reflect the many different interests and phases in education, including schooals,
colleges and universities.

We wish to express our thanks to all members of the working party, and especially to the chairman, Professor Rosamund
Sutherland, for their work in producing a most useful and carefully researched report with well-founded recommendations.
We hope and expect that this report will be effective in improving the mathematical education of pupils in the United
Kingdom.

We wish to record our appreciation for the support given by the London Mathematical Society in assisting with the
dissemination of this report. We believe it deserves to be read by all with an interest in mathematical education.

The report has been approved for publication by the Councils of The Royal Society and the Joint Mathematical Council.

Professor J.C. Robson
Chairman, Joint Mathematical Council of the United Kingdom

Sir John Horlock, FEng, FR.S.
Treasurer and Vice-President, The Royal Society.

A student who knows only Arithmetic is quite right to say that
5 — 8 is impossible; but this impossibility is a gateway that leads
to new knowledge, a stile that has to be got over, leading into a
meadow in which fairer flowers grow than in the field of Arithmetic
that is left behind, a passage through the looking-glass into a
fairyland ”’. (Hudson, 1888, page 134)



KEY CONCLUSIONS

The nature of school algebra

We identify three important components of school algebra:
Generational activities—discovering algebraic expressions
and equations. Transformational rule-based activities—
manipulating and simplifying agebraic expressions, solving
equations, equivaence and form. Global, meta-level activities
—ideas of proof, mathematical structure and problem solving.
Our overal conclusion is that, in England and Wales, an
overemphasis has been placed on generational activities and
that other aspects of agebra have received too little attention.

Algebra as a language

The algebraic language is required in order to develop
awareness of mathematical objects and relationships. Without
appropriate emphasis on the symbolic language such essential
ideas as agebraic equivalence cannot be learned. It has to be
accepted that pupils will make mistakes with the algebraic
language; they must have extensive feedback on these
mistakes before they reach post-16 education.

Changing emphasisin school algebra

Over thelast 1015 years a particul ar approach to algebrain
schools has devel oped. It is characterized by an emphasison
problem-solving in real-world situations, an emphasis on
relating algebra to pupils informal methods and a de-
emphasis of the role of symbols. For example, activities
such as generating expressions from patterns, and the use of
trial and improvement methods for solving quadratic
equations have been emphasized. While these are valuable,
they are not algebraic activities. We conclude that the
National Curriculum is currently too unspecific and lacks
substance in relation to algebra. The algebra component
needs to be expanded and elucidated—indeed rethought.

Implications for national curricula

We recommend a reworking of algebra within the National
Curriculum and a critical appraisa of the notion of levels on
which the National Curriculum is based. The structuring of the
National Curriculum should take into account both the need to
preserve mathematical coherence and a consideration of how
pupilslearn dgebra. We urge that the interrel ationship between
levels of attainment and Key Stage tests be re-examined. We
suggest that more research is needed to understand the
relationship between what algebra is taught and what is
learned. In the A-level common core, content should not be
separated from modes of agebraic activity. We aso urge that
there should be a coherent and clear algebra curriculum for the
mathematical element of vocational courses.

Implications for the timing of algebra teaching

We have identified arange of activities which we consider to
be precursors to algebra. These should take place both in
primary and early secondary schools. We recommend that
algebraisintroduced from the beginning of secondary schoal,
with more emphasis being placed on al aspects of algebra. At
A-level, many students have to devote valuable time to the
development of algebraic ideas at the start of their course. We
recommend that post-16 ingtitutions develop bridging algebra
courses for some students before they start A-level.

Implications for teaching algebra

To be effective ateacher has to be aware of pupils' individua
approaches as wdl as orchestrate learning so that pupils
develop knowledge of mathematics that is recognized by
communities outside school. Algebraic problems within
school will always have to be contrived when relating to the
real world. We believe problem situations have to be devised
in which it makes sense to introduce algebraic concepts, and
inwhich teachers are not fearful to talk about something which
pupils cannot yet know about.

Implications for assessment

Current assessment practices in mathematics tend to place
more emphasis on correct answers than on the process of
solution. It isthe latter which is crucid to algebra. The effects
of form of assessment on learning mathematics needs to be
investigated. We recommend that more attention be given to
assessment design in order to promote algebraic activity.

Implications for the development of curriculum
materials

Those involved in the presentation of mathematics to pupils
need to reflect carefully on the likely learning effects of the
presentation they choose. A mechanism has to be found that
enables feedback on what pupils learn from these materials
to be taken into account.

I mplications regarding new technologies

In England and Wales many changes to the curriculum have
centred around new technologies. Banning the calculator from
aKey Stage test will not result in pupils changing their well-
established method within the test. Banning pupils from ever
using calculatorsin school in not sensible or practical.

Work with certain types of symbolic computer environments
can support pupilsto learn crucia algebraic ideas. We should try
to capitdize on this possibility. More research is urgently
needed on what pupilslearn through using algebraic caculators.

Paper technology did not preclude teachers from asking their
pupils to work mentally. Computer technology should not
preclude teachers from asking pupils to work with paper. In
England and Wales, current financia constraints often inhibit
teachers from attending courses on the use of computers for
teaching mathematics. This should be attended to.

Implications for teacher education

Teachers need support and guidance in order to recognize the
essentid nature of algebraic activity. We recommend that
resources are made available to develop materials and courses
to facilitate this, particularly through in-service training.

Implications for decision making

We urge that more reflection and analysis is built into the
system. This requires time. It aso implies the need for some
body with an overal co-ordinating responsibility for
mathematics from 5 to 19. We should not experiment ‘on the
job’ with our future populations.
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1. Setting the Scene

1.1 Introduction and background

This report of a working party set up in July 1995 is
concerned with the teaching and learning of algebra. The
aim of the working party was:

To make recommendations about the curriculum
and teaching methodsin algebrain order to inform
discussions of any future revisions of the
curriculum, taking into account evidence about
future algebraic needs and current algebraic
competence among different groups of pupils.

With this brief we examined the influences on pupils
experience of algebrawithin all aspects of the pre-university
education system. Separate sections of the report focus on:

e the pre-16 curriculum;
o the 1619 curriculum—A-levels,
e vocationa provision 14-19.

The report has been prepared at a time when there has been
and continues to be an unprecedented political and media
debate about the teaching and learning of mathematics, with
blame being attributed to most aspects of the educational
system, including the National Curriculum, teacher trainers,
teachers and their qualifications, textbook writers and new
forms of assessment. Within this report we examine (from
the perspective of the teaching and learning of algebra) this
multi-faceted system which constitutes mathematics
education.

1.2 Perspectives from higher education

The working party was set up in response to the concern
expressed by those in higher education about the
mathematical background of their undergraduates. The
observations of those in higher education were based on
their incoming undergraduates, but the ‘concern’ was about
the mathematical experiences of all school pupils.
Accordingly the working party had aims and focus not only
restricted to the background of potential undergraduates.
Concerns in higher education were initially fuelled by
university mathematicians and engineers.' In particular
university mathematicians (Tackling the Mathematics
Problem, 1995) identified a number of problems perceived
by those teaching mathematics in universities: * (i) a serious
lack of essential technical facility—the inability to
undertake numerical and algebraic calculation with fluency
and accuracy; (ii) a marked decline in analytical powers
when faced with simple problems requiring more than one
step; (iii) a changed perception of what mathematics is—in
particular of the essential place within it of precision and
proof’ (p. 2). Physicists, engineers and those from other
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scientific disciplines are now actively concerned with what
they perceive to be a serious problem. It has been suggested
that as a result of undergraduates difficulties with
mathematics, university subjects such as biology and
chemistry are becoming less and less mathematical
(Stewart, 1996).

Students have always made mistakes with algebra
However, university lecturers are reporting that students
with A-level mathematics are no longer fluent with symbols
and often make algebraic errors which were previously
characteristic of those students who were lesswell qualified
in mathematics. For example, an undergraduate reading
mathematics to degree level was happy to cancel terms
inappropriately in the following expression:

and consistently made this error in examples of a similar
form. This is but one example of the lack of symbolic
fluency among these students. More importantly, university
lecturers report that their students do not have any means of
explaining and thus correcting these errors when they are
pointed out to them.

One issue which needs examining is that not as many good
students as the universities (including Oxbridge) would like
opt to study mathematics at A-level and afterwards at
university. As a subject, mathematics is competing with other
disciplines to attract the best students. Some of these other
disciplines (computer science, psychology, microbiology and
economics, for example) have grown in popularity and now
attract large numbers of the able and numerate students who,
in the past, might have chosen to study mathematics.

Universties have been facing this competition for students at
a time when they have been under pressure to recruit more
students. Over the last decade the number of students entering
universities has increased from approximately 12% to just
over 30%. This has led to competition between departments
and many universities have been forced to accept wesker
students than they might wish in order to fill their places. At a
time when there has been widespread concern over possible
‘grade inflation’ (Dearing, 1996), universities have not been
ableto raise the grades required for entry and some have even
lowered the required grades. The UCAS University and
College Entrance Guide givesthe actual A-level points scores
of the top and bottom 10% of their entrants. Although
interpreting these is difficult (they do not seem to account for
people who have taken an A-level in a previous year), they do
suggest that students are often admitted with grades bel ow the
published offers. These figures also show that there is alarge
spread in the achievement of university entrantsat A-level (see

* Numerous articles and reports have been published including: Barnard and Saunders, 1994; Tackling the Mathematics Problem, 1995;
Howson, 1996; Sutherland & Pozzi, 1995; Mathematics Matters in Engineering, 1996
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Appendix 1.1). Universities may not have worked out how to
teach classes of students with such a large range of
background qualifications.

The university situation feeds back into the school system
through the graduates who are recruited into the teaching
profession. The complexity of this dynamic system is one of
the reasons why it does not make sense to attribute blame to
isolated elements within it.

1.3 International perspectives

Exchanges between university students within Europe are
beginning to highlight differences between the
mathematical background of UK students and those from
some other European countries. This seems to be
particularly acute in engineering.

At the same time international comparisons focusing on
pupils performance on arange of test items have been used to
investigate differences between pupils knowledge of
mathematics across different countries. The emphasis of these
studies is whether our students reach the same standard as
other students on international tests. These studies very rarely
reflect or discuss the similarities and differences between the
school mathematics culture in different countries. This culture
will be influenced by such factors as the curriculum, the
examination system, the school system, the training and
qudifications of teachers, whether or not pupilsretake years of
schooling and the implications of this on the age of pupils.

Results of comparative studies are difficult to interpret
because school mathematics is not amonolithic subject which
can be unproblematically tested across cultures. It is
questionable whether mathematics itself is culture free, but
even if it were, school mathematics is not. This can be seen
clearly in our discussion of the differences between
assessment items given to 10-year-oldsin France and England
and 18/19-year-oldsin Germany and England (Appendix 1.2).
Research has shown that even small perturbations, such as
changing the names of the letters used in an algebra problem,
affect the waysin which students interpret a problem and thus
their facility with the problem (Rojano et al., 1996). For
example, when asked to write an equation to convert hours H
into seconds S, 17-year- old Mexican students were not able to
interpret the letters H and S as variables because they were
only familiar with using letters such as x and y. This was not
the casefor similar studentsin the UK, who could interpret the
letters H and S as variables athough they could not write a
correct equation.

In addition many comparative studies may not be
comparing like with like. In particular, school-leavers are
often older in other countries (particularly Germany) than in

the UK, athough this is counterbalanced in part by the
reguirement to follow up to eight subjects throughout their
school careers. It can also be misleading to compare the UK
with other countries such as France, where mathematics
plays a specia role in the curriculum® achievement in
mathematics is used in France to establish who has the right
to enter the celebrated Grandes Ecoles. There is therefore a
clear incentive for al students who can cope with the Bac S
(Maths and Physics) to take it even if they do not intend to
specialize in mathematics afterwards. This is in contrast to
the UK and Germany, where pupils tend to speciaize
according to their strengths and interests in order to
maximize their credit (and their schools credit) in the
school-leaving examination. In many other European
countries, and in particular in France and Germany, pupils
repeat ayear if they do not achieve the required standard.

Despite these limitations, the fact that studies are beginning
to show that UK pupils are not as confident in and
competent with some aspects of algebra as their
counterparts in many comparable countries (NFER/SCAA,
1996) suggests that the issue ought to be probed more
deeply. It is beyond the scope of this report to examine in
depth the effects of these quite substantial cultural
influences on the mathematics learning of groups of
students. We urge that comparisons between countries take
a more holistic view of the situation as opposed to
concentrating on one aspect of the system on its own.
Kimbell (1996) has pointed out that the recent discussion
about the apparent success of Taiwanese schools
concentrated almost exclusively on the importance of
whole-class teaching but not, for example, on the fact that
Taiwan spends 15% of its tax revenue on education,
whereas the figure for the UK is 5%.

For the purposes of this report we have chosen to analyse a
sample of assessment papers and examinations from France,
Germany and the UK for pupils at the end of primary
school, at the end of compulsory schooling and just before
potential entry into higher education. We maintain that these
guestions give someindication of what is expected of pupils
at these stages of education and also point to the differences
in the school- mathematics cultures.

We include in Appendix 1.2 a description of the systemsin
France and Germany and some sample examination
questions. Our analysis of a selection of these questions
highlightsthe very different approach to school- algebra that
has been taken in England and Wales, in comparison with
France and Germany. The vast mgjority of pupilsin France
and Germany who stay at school to 19+ continue to study
mathematics. The courses that they take require comparable
skills in algebraic manipulation to those required in single
mathematics A-level.

2 Personal communication with Claude Boucher, Chief Inspector of the European Schools, Brussels.



The examinations in France and Germany taken at 16+ play
a dlightly different role to GCSE. The Hauptschulabschluss
and the Realschulabschluss in Germany are only taken by
those who leave school at 15+ (about 30%) or 16+ (about
35%). They are not used as an intermediate level
examination for the 35% of studentsin the Gymnasium who
are going on to take the Abitur. In France, the Brevet, which
istaken at 16+ by nearly all students (and passed by the vast
majority),® is not usually considered important by
mathematics teachers who teach mathematics for the
Baccalaureate and do not usually put energy into preparing
students for the Brevet.

What is striking about comparisons between expectations of
16+ pupils in France and Germany with those of pupils in
England and Wales is that the vast mgjority of French and
German pupils at this age are expected to engage with
algebrai c ideas which many of our students do not encounter
until A-level (for further discussion see Appendix 1.2). Why
do we have such different expectations of our studentsin the
area of algebra than is the case in France and Germany? It
seems to relate to a limited view of what pupils can be
expected to achieve, which is almost always considered to
be an inevitability as opposed to something that can be
influenced by teaching. It is beyond the scope of this report
to probe the cultural differences which might explain
different expectations in different countries. However, these
different expectations and related achievements do provide
a counter-example to suggestions that only a small minority
of students can succeed with mathematics.

1.4 Teaching and learning algebra

Traditionally pupils introduction to school agebra was
predominantly concerned with using and operating on literal
systems. Thisisillustrated by the following excerpt from an
algebratextbook (Fig. 1.1) whichissimilar to that which the
majority of those of us writing this report would have
experienced when we were at school:

6 Addnt - 3mn + 27, 3 — n? and 5mn — 32 + 2nt.

7 Add 3a - 2ac — 2ab, 2b? + 3bc + 3ab and ¢ — 2ac
- 2bc.

8 Addath - 5al? + 7h?, 2a° — &b + 5ab? and 30 — 2&°.

9 Subtract 3a—4b+ 2cfroma+b - 2c.

10 Subtract+b-cfromc—a-b.

Fig. 1.1 Example of algebra exercises from a 1950s textbook

This approach to teaching algebra involved presenting
pupils with symbolic code as a means of generalizing from
arithmetic in which ‘letters stand for numbers. The
emphasis was on repeatedly practising algebra by working
through a multitude of exercises.
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The teaching of algebra remained essentially unchanged
until the mathematical reform movement, starting in the
1960s and spearheaded in Britain by the School
Mathematics Project. This movement reflected the changing
role of algebra for mathematicians, placing an emphasis on
algebra as alanguage for representing structures. Functions,
mappings and the language of sets became a strong focus
within many schools, and pupils first introduction to
algebra was now likely to be in the context of set theory.*
Freudenthal maintains that the new mathematics had a
disastrous effect on the teaching of algebra and was
particularly critical of the ways in which letters began to be
used to denote both sets and members of sets (Freudenthal,
1973). The effect of the new mathematics movement has
also been criticized by Chevallard (1984), who maintains
that what was lost within this reform was the diaectic
between arithmetic and algebra which was so heavily
prevalent in the earlier algebra textbooks. He stresses that
this dialectic existed even before the construction of the
algebraic language and that in Greek times there existed two
arithmetics, a computational arithmetic (logistica) and
theory of numbers (arithmetica).

In the 1970s and the 1980s considerable research evidence
began to accumulate showing that the mgjority of pupils were
not interpreting literal symbolsin wayswhich were appropriate
to agebra(Booth, 1984; Kieran, 1989; K lichemann, 1981). For
example, pupils might think that a letter in algebra stood for its
position in the aphabet or the name of an object (afor apple, b
for banana). These results resonated with schoolteachers who
had always found that school agebra alienated many of their
pupils. In the UK, greeatly influenced by this research, there
began to be ashift in what congtituted school agebrainthe pre-
16 curriculum with a substantial move away from the use of
literal symbols (Sutherland, 1990).

In the UK the Cockcroft Report adso had a considerable
influence on changes to school mathematics and in particular
school algebra. Recommendations related to ‘understanding’,
Situating mathematics within * practical’ problems and the need
for a differentiated curriculum have al influenced the
curriculum in wayswhich haveresulted in lessemphasisbeing
placed on algebra. Thisis illustrated by the following quote,
which draws some general conclusions about algebra,
athough the Bath Study referred to was carried out with a
particular sample of non-university entrants only.

Formal algebra seems to have been the topic
within mathematics which attracted most comment.
Those engaged in the Bath Sudy were ‘left with a
very strong impression that algebra is a source of
considerable confusion and negative attitudes
among pupils'. In some cases this was because the
work had been found difficult to understand: in

% 1n 1995 90% of the age cohort born in 1980 took the Brevet examination and 73% of this age cohort passed the examination. A reform of the
Brevet is due to give back some importance to this examination (personal communication with Antoine Bodin, Université de Franche Comte).

4 In the UK the degree of abstraction in modern mathematics was less than on the Continent. See ‘New Thinking in School Mathematics,
Organisation for Economic Co-operation and Development (1969); ‘ Synopses for modern secondary school mathematics, OECD, 1st

printing, June 1961.
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other cases it was felt that exercises in algebraic
mani pulation and topics such as sets and matrices
had had little point. (Cockcroft, 1982 para 201)

As dready discussed, school agebra has never been the same
in al countries and has not evolved in the same ways in dl
countries over the lagt 10-15 years. We have had particular
influences in the UK which appear to relate to our more
pragmatic culture, although countries such as the USA,
Canada, Augtrdia and the Netherlands seem to be changing
their school agebracurriculum inwayswhich aresimilar tothe
UK (see for example Treffers, 1993). In fact some of the
current changes in the USA are heavily influenced by changes
in the Netherlands and the UK. Countries such as France and
Germany have also developed their school agebra curriculum
over thelast 15 years, but in waysthat seem to be of adifferent
nature to the changes in the UK. The situation is complex and
there are even differences between school agebrain England
and Scotland (Sutherland & Pozzi, 1995). However, no country
other than England seemsto have been so keen to delay pupils
experiences of the formal language aspects of algebra®

The reformsto the algebra curriculum, already established in
England and Wales, and currently taking place in the USA,
are influenced by a desire to relate algebra to problem-
solving. In fact algebra word problems which were
traditionally used to teach algebra were always related to
problem-solving. However, in England and Wales such word
problems were considered to be too contrived and have
amost disappeared from text materials, with an attempt
being made to replace them with more relevant and redlistic
problems as recommended by the Cockcroft Report.
Nowadays, problems involving patterns of tiles or matches
(DIME, 1984; SMP 11-16, 1984) have become many pupils
first introduction to ideas of generalizing and formalizing.
However, the agebraic purpose behind these questions is
often lost with the teacher not knowing how to support pupils
to move from their informal constructions to a forma and
algebraic relationship (Stacey & MacGregor, 1997).

Sutherland (1990) has argued that one of the reasons why the
algebraic language aspect of mathematics has become so
under-emphasized in the UK relates to teaching approaches
which place considerable emphasis on pupils informal
methods, making it difficult to teach the rule-bound aspects of
the algebraic language. Thus it would appear that the algebra
which pupils learn is inextricably related to the teaching
approaches used. But if we consider teaching algebra to be
similar to teaching aforeign language, there are many waysin
which it can be taught that do not necessarily involve over-
emphasizing rules. Brown and a group of secondary school

teachers (Brown et al., 1990) developed ways of introducing
the algebraic language to 11-16-year-old pupils which
involved the teacher working with the whole class drawing on
pupils own awareness, but aso transforming these
awarenesses through use of the algebraic language. The aim
was for students to experience the power of the algebraic
language to support insight into mathematical structures.

Another reason why symbolic aspects of algebra have been
under-emphasized is that it is clear that the mere use of
algebraic litera symbols does not imply that pupils are
acting and thinking algebraically.

M odes of algebraic activity

Within this report we shall use the phrase *agebraic activity’
to describe the kinds of encounters students ought to be
having with algebra. Kieran (1996) has identified three
components of ‘algebraic activity’:

Generational activities which involve: generating
expressions and equations which are the objects of
algebra, for example, equations which represent
quantitative problem situations (for example Bell,
1995); expressions of generality from geometric
patterns or numerical sequences (for example,
Mason et al., 1985); and expressions of the rules
governing numerical relationships (for example,
Lee & Wheeler, 1987).

Transformational rule-based activities, for example,
factorizing, manipulating and simplifying algebraic
expressions and solving equations. These activities
are predominantly concerned with equivalence, form
and the preservation of essence.

Global, meta-level activities, for example, awareness
of mathematical structure, awareness of constraints
of problem situations, justifying, proving and
predicting, and problem-solving. These activities
are not exclusive to algebra.

The nature of these activities is discussed more fully in
Chapter 2.

We claim throughout the report that currently we prioritize
generational activities in pre-19 education, to the detriment of
transformational and global meta-level activities. The algebraic
language is a tool which supports al of these activities. It had
always been taken for granted that university students in such
subjects as mathematics, engineering and many of the sciences
would aready be fluent in the use of this language before

SThisisillustrated by the following excerpt from an internal discussion document written in January 1988 for consideration by the National
Curriculum Mathematics Working Group. ‘ Very serious consideration needs to be given to the amount of algebraic manipulation which is
now needed, and by how many pupils. The computer or algebraic manipulation cal culator now makes it unnecessary for pupils to acquire
much skill at manipulation such as factorisation and combination of algebraic fractions. It is not known how much (if any) pencil and
paper facility is needed to understand what the computerised tools are doing and to understand the reasons for expressing algebraic
formulae in avariety of forms. However, algebraic notation, such as that for powers will continue to be needed. Algebraic manipulation
is an area in which profound change is likely in the next few years. At present it is an area where many pupils suffer severe loss of
confidence. We believe it should only be expected in meaningful situations and when the case for it has been well made.’



entering university. However, fluency with symbols has
become confused with rote manipulation. Rote manipulatation
is often viewed in a pgjorative way because it is seen as being
in opposition to rea understanding (Walkerdine, 1988). Thus
fluency with symbols and dl the attendant transformational
rule-based activities have become under-val ued.

When babies |earn to talk they inevitably use words without
understanding what they mean (as do adults when learning
new conceptual areas). This is why a desire for pupils to
understand mathematics before they use it getsin the way of
the learning of the algebraic language. In other words, using
the algebra language in incorrect ways is an inevitable and
inextricable part of learning this language, which we argue
ought to take place before students enter university to read
mathematics, science and engineering. Implicit in much of
the thinking behind the National Curriculum is the idea that
all forms of mathematical representation are only add-onsto
an already understood process. Gauss once said that what
matters in mathematics is not notations, but notions (quoted
in Stewart, 1995). We argue that the notion and the notation
cannot so readily be separated, and good notation does
facilitate thinking and communication in mathematics.

Tall (1996) stresses the importance of the use of symbolsfor
compressing information in order to enhance thinking. ‘I
hypothesise that greater mathematical success comes not
from remaining linked to the perceptions of the world
through our senses, but through using the symbolism that is
especially designed for doing mathematics and for thinking
about it’ (p. 28). He also emphasizes that ‘ mathematicians
think powerfully precisely because they use the links within
mathematics and do not relate constantly to the real world’
(p- 30). Similar ideas have been discussed by Arzarello et al.
(1997). Whereas it is important that students do link
mathematics to the real world when appropriate, over-
emphasis on this aspect is likely to detract from learning
algebra. This is why the current emphasis on problem-
solving is detracting from algebraic activity.

Theissue for mathematics education is how to re-emphasize
the role of symbols without precipitating a return to the
traditional and often ineffective means of teaching algebra
which were prevalent 2030 years ago. These methods were
ineffective because they only worked for a very small
proportion of the school population and, as Cockcroft
pointed out, actually alienated many pupils from
mathematics. However, algebra and the algebraic language
are central to mathematics and if we do not teach algebra
then we are not teaching mathematics.

Arcavi (1994) has tackled the issue in a recent article. He
identifies a number of aspects of symbol sense which
include: an understanding of and an aesthetic feel for the
power of symbols; a feeling for when to abandon symbols
in favour of other approaches; and an ability to manipulate
and to ‘read’ symbolic expressions as two complementary
aspects of solving algebraic problems.
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The solution of simple algebraic equations, as
usually posed in standard texts and as usually
taught in the classrooms, automatically arouses an
‘instinct’ for technical manipulation. Thus it
requires a certain maturity to defer the ‘invitation’
to start solving, for example (2x + 3)/(4x + 6) = 2
and instead to try to ‘read’ meaning into the
symbols. In this case, one might notice that,
whatever X, since the numerator is half the
denominator, this equation cannot have a solution.
We claimthat thisapriori inspection of the symbols
with the expectancy of gaining a feel for the
problem and its meaning, is another instance of
symbol sense. (p. 27)

1.5 The impact of new technologies

Currently there are two main types of computer
environments which are impacting on school algebra. The
first is the interactive microworld-type of environment in
which algebra-like symbols are used to approach
quantitative situations, such as work with spreadsheets,
graphics calculators and other programming environments
(Noss, 1986; Sutherland & Rojano, 1993). Research has
shown that when pupils are working in these environments
they can learn to use symbols to represent general numbers,
set up algebra-like expressions, work with the unknown and
express relationships between variables. More importantly
when working within these environments, pupils haveto use
a symbolic language so they are engaging with a range of
rule-based transformational activities. Work with such
environments also points to different ways to teach
traditional algebra and emphasizes the importance of use-
with-feedback in the learning of symbolic languages. When
pupils work together at the computer they start using the
computer-based formal language to tak to each other
(Healy et al., 1997). This oral work isan important aspect of
learning a symbolic language.

The second type of environment is the computer algebra
system (CAYS) (for example Derive and Mathematica) which
is now available on hand-held calculators, which the
majority of post-16 students are likely to own by the end of
the century. There is relatively little research on how CAS
can be used for the teaching and learning of school algebra
and yet there is considerable ‘hype’ and pressure from
commercial companies. Independent research studies are
urgently needed to investigate some of the claims being
made. It has been suggested that CAS will promote a better
conceptual understanding of mathematics: ‘The use of a
machine can be a benefit to a good conceptual
understanding’ (Algebra at A-level, 1996). The idea that
seemsto beimplicit hereisthat because the machineis doing
the symbolic manipulation the pupil will be free to develop
understanding. It is not clear why this should be the case and
relates very much to the previously discussed dominant idea
that active work with algebraic symbols promotes rote as
opposed to real understanding.
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Arithmetic calculators can be used by pupils to avoid
thinking about important mathematical objects (for example
fractions) and to avoid thinking about structure (for example
a=b+ cbhengthesameasa - b =c). Computer algebra
systems could help pupils focus on certain types of algebraic
objects (for example equations), but as with arithmetic
calculators they could detract from a focus on agebraic
structure. The type of research question which needs to be
asked is: Which agebraic objects and relationships are
pupils using and thinking with when they work with a CAS,
and how does this relate to the types of problems which is
being solved? Aswith all aspects of algebra, the teacher will
play an essential role in mediating the use of computer
algebra systems. Calculators and computers are
computational and not pedagogical tools (Pimm, 1995),
although they can be harnessed by the teacher for
pedagogical purposes.

Students can use computer algebra systems to solve al the
traditional algebra manipulations which were the
‘backbone’ of school algebra 20 years ago. We need to
analyse the purpose of these school algebra questions,
which was certainly not to ‘get the right answer’, but to
induct pupils into using and thinking with the algebra
language. We maintain that this is still as important as ever
within mathematics, engineering and many of the sciences.

The growth of IT has made it possible for students to
manipulate many different types of external representations
on the screen, involving symbolic, graphical and tabular
forms. It is now possible to manipulate graphical
representations in ways which were not possible on paper.
Harnessing this new power within mathematics and school
mathematics is the challenge for the 21st century.

1.6 Summary

Influenced by the Cockcroft Report mathematics educators
have taken a particular approach to school algebra which
prioritizes generational activities and pays little attention to
transformational and global meta-level activities. This is
characterized by:

e an emphasis on problem-solving related to
‘real-world’ problems;

e an emphasis on relating algebra to pupils’
informal methods;

e ade-emphasis on the role of symboals.

The dituation in England and Wales contrasts with the
situation in other European countries, and in particular
France and Germany. In England and Wales we expect less
from the majority of pre-16 pupils in terms of learning
algebrathan isthe case in France and Germany. In addition,
the majority of students who stay at school to 19+ in
Germany and France are taught algebra which is equivalent
to that within A-level single mathematics.

Pupils can learn many important aspects of algebra, and in
particular the idea of a variable, from work with interactive
computer environments which use symbols to approach
quantitative situations. However, we cannot emphasize
enough that calculators and computers are computational
and not pedagogical tools. Their use in schools will always
have to be orchestrated by a teacher.

The teacher is crucia to all aspects of learning algebra
because algebra does not relate to the real world and does
not develop spontaneously within children. The teacher has
to support pupils to make the leap from arithmetical to
algebraic approaches to solving problems.

Throughout this report the changing situation over the last
10-15 years is examined. The influence of the National
Curriculum, levels of attainment and Key Stage tests on
what algebra/mathematics teachers are likely to teach is
investigated in Section 2. The effects of changes in the pre-
16 curriculum on algebra at A-level are the focus of Section
3. Finaly in Section 4 the issue of agebra in the new
vocational qualifications is addressed. This report was
written throughout 1995/96 and we recognize that the
system is continually changing. The report does not take
account of changes made after August 1996.

2. The Pre-16 Curriculum

2.1 The changing situation over the last 15 years

After the Cockcroft Report (1982) changes were effected
within mathematics education (Brown, 1996). New
curriculum schemes were developed and in particular the
new School Mathematics Project (SMP 11-16, 1984) which
was ultimately used in more than 70% of schools. Primary
and secondary DES-funded advisory teachers were
appointed in each LEA to work alongside teachers. These
were called * Cockcroft’ missionaries and the intention was
that they would influence classroom practice as
recommended by the Cockcroft Report. Curriculum and
graded assessment schemes were developed for the lowest
attainers in the 14-16 age group (for example LAMP,
GAIM). Findly the new General Certificate of Education
(GCSE) was introduced in 1986. ‘Clear recommendations
were given that the way to increase confidence and
application skills is to broaden methods of teaching and
assessment to include practical work, problem-solving,
investigations and discussion, alongside the traditional
exposition and practice’ (Brown, 1996, p. 6).

With the introduction of GCSE the debate about
process/content was highlighted. Specific curriculum materiads
were developed to support the GCSE examination which were
intended to affect classroom practice, notably materials
produced by the Shell Centre (1984). New approaches to



algebra were emphasized, for example generalizing from
figurative patterns (see for example SMP 11-16, 1984).
Algebra often became the ‘hidden curriculum’ within
investigations, hidden in the sense that pupils were not
necessarily aware that high marks would be awarded for
generalizations expressed in algebra.

One effect has been that rote learning of algebraic
manipulations and proof is being replaced by rote learning
of pattern spotting (Coe & Ruthven, 1994).

The undoubtedly ‘ good ideas’ embedded in many of the new
curriculum materials started to become institutionalized in
our school curriculum in quite unintended and unpredicted

ways.

In 1989, the National Curriculum for Mathematics came
into being and the arguments were renewed, with the
introduction for the first time of specific process-related
attainment targets for children up to 16 years old
(Attainment Target 1: Using and Applying Mathematics).

The National Curriculum has changed at least three times
since its origina introduction. However, central to all
versions of the National Curriculum is the idea of levels of
attainment. Statements of attainment were organized into
ten levels, on the recommendation of the TGAT report
(DES, 1988). Kiicheman (1990) has pointed out that the
members of TGAT stated that they:

assume progress to be defined in terms of the
national curriculum, and the stages of progress to
be marked by levels of achievement as derived
from that curriculum. It is not necessary to
presume that progression defined indicates some
inescapable order in the way children learn, or
some sequence of difficulty inherent in the material
to be learnt. Both of these factors may apply, but
the sequence of learning may also be the result of
choices, for whatever reason, which those
formulating and operating the curriculum may
recommend in the light of teaching experience.
(DES, 1988, p. 93; emphasis added)

Thus these levels were not overtly related to the ways in
which children learn, or to any concern with mathematical
coherence, but seem to have been a pragmatic response to
setting clear age-related targets. Kiichemann suggests that it
islikely that the National Curriculum levelswere influenced
by the Concepts in Secondary Mathematics and Science
(CSMS) research which classified itemsin selected areas of
the mathematics curriculum into levels. ‘As well as
providing data on individual items, the CSMS work
classified items in selected areas of the mathematics
curriculum into levels and it is likely that this was seen as
providing support for the use of levels in the National
Curriculum, though this is not acknowledged by the
mathematics working group’ (Kichemann, 1990, p. 107).

Our analysis of the various versions of the National
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Curriculum suggests that the resultant 1995 version of
mathematics has actually changed very little with respect to
algebra. Even though the new Programmes of Study might
appear to have changed, the level descriptions belie this and
changes appear to be mostly cosmetic (see Appendix 2.1 for
Attainment Target 2: Number and Algebrain 1995 National
Curriculum).

Within this section of the report we examine the potential
influences of the GCSE examination, the National
Curriculum and textbook materials on teachers’ practice.

2.2 Changes to school algebra

We maintain that the National Curriculum, national
assessments and textbook schemes all combine to play an
influential role on pupils’ experiences of school algebra. In
particular textbook schemes developed in response to the
Cockcroft Report were used by the vast majority of pupils
in the UK. Although we recognize that they were never used
by all pupils and that their influence is decreasing, they do
provide an indication of the culture of school algebrain the
UK over the last 15 years.

Secondary school—K ey Stages 3 and 4

Before we discuss (in Section 2.3) what we consider to be
algebra and modes of algebraic activity for this age group, we
describe here the main factors that are currently structuring
what pupils learn.

Trial and improvement methods are a valuable technique for
solving polynomial equations of degree 3 or more and a
wide range of equations which cannot be solved
algebraically. However, trial and improvement seems to be
becoming the preferred and probably only method which
the majority of pupils are confident with in pre-16
education. Interviews with A-level science students suggest
that some of these students use this approach when solving
simple linear equations (Sutherland et al., 1995), which was
not the case with asimilar group of studentsin Mexico who
were also interviewed. Vile (1996) found the existence of
trial and improvement and systematic enumeration methods
when a group of year 9 pupils were asked to solve a range
of equations (see for example Fig. 2.1).

Q4.
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Find Q in the equation 3(40Q — )= 52Q- 4)
Bxlbow___ -0 = 5x2x__-k
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Fig. 2.1 Repeated trials to solve linear equations
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That these methods have been found to exist among year 9
and year 12 pupilsin England suggests that what could have
been considered to be a spontaneous approach to solving
simple equations is how becoming a taught method. More
evidence for this is found in the Letts Study Guide, Key
Stage 3 Mathematics (Williams, 1991, p. 74).

This approach to solving equationsis explicitly examined at
GCSE, often to the detriment of other methods, asillustrated
by the following example (Fig. 2.2).

Judy is using ‘tridl and improvement’ to solve the equation
X¥+x=11

Complete her working and find a solution correct to one
decimal place.

Try x=35 352+35=15.75 too large
Tryx=25 252+25=8.75 too small
Try x=3.0

Try x=

Fig. 2.2 Solving quadratic equations using ‘trial and improverment’

Solving quadratic equations by this method is not likely to
provoke pupils to think about why there can be two, and
only two, solutions to a quadratic equation or how this
relates to the shape of the quadratic graph. Consider the
following example from a GCSE candidate entered for the
higher tier of GCSE and asked to solve the equation:

(x+3)(x+1) =15
The pupil answered the question by saying,

‘two numbers multiplied together give 15 ... must be
5and 3. Sox=2 because2+3=5and2+1=3

The pupil appearsto have devel oped an informal method for
solving quadratic equations and is apparently unaware that
this gives only one solution. In fact, this single solution is
seen as the end of the process and s/he hasn’t seen (-5 and
-3), (1 and 15) and (158 and —1) as aternative numbers
whose product is 15, nor given any indication of being
aware of the fact that none of the non-integer pairs whose
product is 15 can give rise to a solution. Searching for one
solution to a quadratic is actively encouraged by the type of
trial and improvement approach, illustrated above, which is
routinely examined at GCSE.

When pupils have become proficient with trial and
improvement methods for solving equations they are unlikely
to want to learn algebraic methods. In addition, the trid and
improvement method may actually constitute an obstacleto the
learning of algebraic methods. This is because trial and
improvement involves working forwards from a ‘known’
gtarting number to the ‘unknown’ number, whereas agebraic
methods involve working backwards from an ‘unknown’

number to aknown number. The National Curriculum specifies
that pupils should select ‘the most appropriate method for the
problem concerned, including triad and improvement methods .
This type of statement has institutionalized ‘trial and
improvement’ as an algebraic method.

Problem-solving and process skills detracting from algebra.
The National Curriculum has divided mathematics into four
attainment targets. These divisions can result in any
algebraic coherence being lost. Problem-solving is specified
in the Number and Algebra Attainment Target 2 and much
of the meta-level activities of algebra are specified in the
‘Using and Applying Mathematics Attainment Target 1’
strand. For example, level 7 of Attainment Target 1, ‘ pupils
justify their generalisations or solutions, showing some
insight into the mathematical structure of the situation being
investigated’ is arguably related to algebra, whereas
problem-solving processes such as exploring number
patterns and trial and improvement are specified in
Attainment Target 2 (Number and Algebra). This has led to
pattern-spotting almost becoming algebra to the detriment
of other algebraic ideas. Moreover, classical algebraic
methods for solving equations are not explicitly specified
(in contrast to trial and improvement methods). In Section
2.3 we present a suggestion for showing, in a diagrammeatic
form, the relationship between different strands of an
algebra curriculum.

Thinking algebraically involves compressing processinto new
mathematical objects, for example 3x + 7. In algebra these
new objects are objects to think with and not processes to be
carried out (Tall, 1996). The new compressed objects maintain
live connections with their related processes (Barnard, 1996).
Currently our curriculum places too much emphasis on
process, which becomes ingtitutionalized as something to be
taught, for example: Try some simple cases; find a helpful
diagram; organize systematically; make a table; spot patterns;
use the patterns; find a general rule; explain why it works;
check regularly (Key strategies for investigations proposed in
materials prepared by the Shell Centre (1984, p. 46)). Thishas
led to the introduction of more empirica methods into our
mathematics curriculum. These methods often inappropriately
become the focus of teaching.

School algebra tends to be forced into spurious contexts in
order to be taught and examined. The algebraic purpose of
these contexts is not clear and the contexts are likely to
detract pupils from focusing on algebraic activity. Our
concern is that the purpose of the context from the point of
view of learning algebra does not seem to have been
analysed (cf, the use of a grocery shop context to introduce
pupils to equivalent algebraic expressions in SMP 11-16
(see Appendix 2.2). Our point is that there is a difference
between the use of context, such as those used in the
traditional algebra word problems, and the current cosmetic
‘dressing up’ of a problem which appears to be merely
aimed at motivating pupils to get started on a problem. We
suggest that more research needs to be carried out on the



effects of ‘redlistic’ contexts on pupilsS mathematical
learning and motivation. Publishers seem to demand this type
of dressing up, often in the form of pictorial illustrations, and
we question whether they are the best people to determine
what mathematics our pupils are learning (see Pinel, 1996).

The use of symbols is often relegated to some later stage in
the generalization process. Pupils are often expected, when
writing up their investigations, to show that they have worked
through the stages of: make a table, spot patterns, use the
patterns, find a genera rule. If a pupil does use symbols to
express a general relationship without writing down some of
the other stages teachers can often interpret this as showing a
lack of ‘rea’ understanding (Morgan, 1996). When emphasis
is placed on generating and formulating algebrai c expressions
there is a tendency for not enough emphasis to be placed on
using these expressions to some purpose. In other words,
when symbols are produced they can be seen asthe end point
of aprocess and not the starting point for further thinking. In
Appendix 2.3 we present what we consider to be a good
example of pupils work in which symbols are generated in
order to be used as atool to think with.

National Curriculum level descriptions. Our analysis of the
1995 Key Stage 3 Mathematics test suggests that the idea of
level descriptions has had the effect of straight-jacketing
Key Stage 3 questions to fit the level descriptions for the
various attainment targets to the detriment of the teaching
and learning of algebra. Consider the opposite example
from the 1995 Key Stage 3 test of levels 5-7.

The agebraic purpose of this question is related to the idea that
itispossbleto expressin different, yet algebraically equivalent
ways, the same pattern or sequence. So the question
emphasizes that Sue and Owen have found different ways to
express square patterns of dots. Sue has found a relationship
which could be expressed asn?=n + n (n — 1). Owen hasfound
a relaionship which could be expressed as ? = 2 x n +
(n—1)(n-2) + (n - 2). However, in the assessment item the
pupils are only asked to satisfy level 6 ‘When exploring
number patterns, pupils describe in words the rule for
generating the nth term of a linear sequence, questioning and
checking the accuracy of their generdisation’ and level 7
‘Pupils express in symbolic form and explain the rule for
generating the nth term of a sequence, where the rule can be
formed by combining two linear functions. They are actually
provided with rules expressed in numbers and so have only to
express in symbols someone else's rule. They are not asked to
explain or jugtify why Sue and Owen's rules are equivaent.®
Thus the whole potential of this type of problem has been lost
by the need to fit it into the level descriptors. We recognize that
these questions are devel oped for assessment and not teaching,
but they may influence teachers who could view those who
write assessment items as experts. Thus test items could
destabilize teachers confidence in what is mathematics and
what isagebra.
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10.

Sue and Owen are using square patterns of dots to find
different expressions for n2,

Sue's work:

37 = 3+ 3x2
A
< AY= 4+ 4x3
o . 5. s+sx4

(a) Sue wanis to write an expression for n2 using her diagrams.
Complete Sue's expression for n2.

nZ=n+
Owen's work:
. ey -
]___ I = 2xJ+2x) +
R P X ~
) A7 =2 2x443Ix2+2
..... -
..... S = 2xS+ 4xT +3
(b} Write down Owen's expression for n2.
n2 =

Fig. 2.3 1995 Key Sage 3 test item—level 5-7

The working group found many Key Stage 3 assessment
items in which the algebraic purpose of the items was not
clear (see Appendix 2.4 for an example of an item involving
patterns of matchsticks in which the opportunity of ng
function and inverse function is not realized, presumably
again because of the level of the question). As these levels
impact on assessment items, which in turn impact on what
teachers teach, algebraic coherenceis being lost.

¢ An earlier version of thisitem did ask pupils to justify why the rules are equivalent but this was deleted after trialsin the field, possibly
because the question was too difficult for pupils. This deletion of the algebraic purpose of the question illustrates the way in which levels
of attainment and Key Stage tests are having a cumulative effect on school algebra.
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Mathematics is a complex conceptual domain. The attempt
to reduce it to levels of attainment which can be tested at
Key Stages 1, 2 and 3 with the possibility of some Key
Stage 2 pupils being tested on algebrafrom level 6 and some
Key Stage 3 pupils being tested on algebra from levels 3-5
leads to a quite ‘ senseless' fragmentation of what algebrais.

Moreover, whatever is specified in the Programmes of
Study is then explicitly tested. This is illustrated by the
Algebra Programme of Study (DES, 1995, para 4a, p. 17)
‘explore number patterns arising from a variety of
situations' which leads to the quite inappropriate
proliferation of ‘number pattern’ assessment items and also
the reference to trial and improvement in paragraph 5d with
similar unproductive consequences from the point of view
of teaching and learning algebra.

The influence of these test items on what teachers teach is
likely to be substantial, within the current climate of league
tables, market forces and teacher assessment. Moreover,
student teachers are expected to reference levels of
attainment in their lesson plans. Teachers could teach
mathematics without paying attention to levels of
attainment and Key Stage tests but these were actually set
up to improve learning in schools, that is to influence
teachers in what they teach.” However, if, as we have
argued, the sense of algebra has been lost within the test
itemsthen thisislikely to lead to pupilslearning ‘ senseless
algebra. We believe that research is needed to investigate the
effects of testing approaches and levels of attainment on
what pupils learn, with a particular focus on algebra.

GCSE examinations

There is very little emphasis in GCSE examinations on
algebraic methods of solving equations. The ‘trial and
improvement’ method is usually examined, which is not the
case for the algebraic method. Neill (1995) report that ‘In
GCSE papers the number of marks allocated for algebraic
manipulations is low’ (p. 2) and they go on to say ‘It is
possible for a candidate to attain agrade A in GCSE without
addressing any of the algebraic items'.® An estimate of the
total number of marks awarded for algebrain GCSE is 11%
of the total marks.

Students can obtain a grade B in GCSE from the
Intermediate Tier. Thistier examines minimal algebra. This
Intermediate Tier is targeted at grades C and D (available
gradesare B, C, D, E).

There appearsto be areluctance to present questions related to
a more abstract use of agebraic symbols without dressing
them up within a spurious context (for example ‘ Steve has
found this diagram and expressions in an old book’, MEG
SMP 1116, Paper 5, 1995) or the use of patronizing pictures

10 This formula can be used to calculate
the percentage volume of carbon
dioxide in the flue gases from a boiler:

v=k(1--"—).
" 21

V is the percentage volume of carbon
dioxide,

x is the percentage volume of oxygen,
kis a constant for the type of fuel.

(a) Find Vwhen x=4-6, k=11-9. {2]

Fig. 2.4 lllustration ‘bolted on’ to question. MEG 1995 - Paper 5

to illustrate a situation as in the example presented in Fig.
2.4 from the same paper. Whereas we have found some
appropriate uses of context in the Scottish Standard Level
examinations (for example Fig. 2.5 below), English GCSE
questions seem to prefer more artificially made-up
questions as for example ‘A possible points system for the
high jump event in athleticsis given by P=a(M - b)> where
M is the height jumped in cm, P is the number of points
awarded and a and b are positive constants' (Question 4,
SEG, Higher Tier paper 6, 1994).

x inches

y inches

A square picture frame is shown above.

T'he border of the frame (shaded in the diagram) has uniform width and an area
of 48 square inches.

(¢) Show that (x ~y) (x +y) = 48.
(6) Given that x and y are whole numbers each greater than 10, find suitable
replacements for x and y.
Fig. 2.5 Appropriate use of context. Scottish Certificate of
Education, Credit Level, 1993

Primary school—K ey Stage 2

Some early aspects of algebra are now included in the
primary school curriculum. Many primary schoolteachers
are likely to have difficulties themselves with this area of
mathematics and may not recognize the essential aspects of
algebra (students can be accepted on courses training
primary schoolteachers with a grade C at GCSE). This is
likely to result in primary teachers either avoiding teaching
algebra or teaching it in a mechanistic way.

"It isinteresting to note that schools in the private sector do not legally have to teach the National Curriculum.
& We recognize that as from 1998, GCSE syllabuses will include a greater emphasis on algebraic skills.
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The following example used by a primary teacher to teach
that 5 x 3 = 3 x 5 illustrates how the particular choice of

»'A ’! )“,
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Fig. 2.6 lllustration used toteach 5x 3= 3 x5

curriculum material s does not support teachersto emphasize
the importance of structure in arithmetic/algebra:

A picture of 3 leaves, each with 5 ladybirds and another
picture with 5 leaves, each with 3 ladybirds does not
illustratethat 5 x 3 =3 x 5. The pictorial representation used
loses al the structural aspects of the relationship, the
conclusion that 5 x 3 and 3 x 5 are equal relying solely on
the fact that both are equal to the specific number 15
(obtained by counting) rather than on the underlying
features which apply generally to any product of two
numbers. This example illustrates how inappropriate use of
pictorial images detracts from mathematics. However, had
the first picture been of a rectangular array of dots with 5
rows each of 3 dots and the second one of 3 rows of 5
identical dots then this would be seen as structurally sound
and containing the essence of the algebra. Many such
curricula materials are influenced by pressures from
publishers to illustrate mathematics in texts which they
believe will sell. No account seems to be taken of the
mathematical meanings which pupils are likely to derive
from the presentation of a problem. More research needs to
be carried out on curriculum developers views on
mathematics and whether they take into account the idea
that the meanings pupils construct are inextricably linked to
the material s with which they interact (Brousseau, 1997). In
other words, the nature of the mathematics which pupils
learn will be influenced by the specificities of the images
which are presented to them.

Teaching and Learning Algebra pre-19

Analysis of the Key Stage 2 test items suggests that not
enough emphasis has been placed on the pre-algebraic notions
of structure and genera arithmetic. Consider the following
item taken from the 1996 Key Stage 2 test (levels 3-5).

As illustrated by the pupil solution to this question, some
pupils seem to be learning to use a ‘tria and improvement’
method for this type of problem. This strategy is likely to be
influenced by work with calculators. In this way pupils are
avoiding inverting operations, which are a precursor of
agebra. Analysis of scripts from a recent study with British
and French primary school pupils® shows that the British Key
Stage 2 pupils made much more use of written trials on paper
than was the case with the French pupils. Thisresult hasto be
treated with caution as the French pupils may have been
reluctant to write down their ‘rough’ working. However, there
were no French examples of ‘informal’ strategies such as
tallies or repeated addition instead of multiplication.

2a. Write in the missing number.

v o 1+ 5 = 22

o )
S]L“yg - | L o&o
- 9! 5
nl o YDFI%B (61} 5?\“%

Siilo

Fig. 2.7 Example of pupil’s work from 1996 Key Stage test

This emphasis on ‘tria and improvement” methods, which we
have found within the curriculum from Key Stage 2 throughout
the pre-16 curriculum, is possibly one of the most worrying
aspects of the curriculum from the point of view of developing
agebraic ideas and relates to an over-emphasis on answer as
opposed to method. More research needs to be carried out on
whether these*tria and improvement’ methods do congtitute an
obgtacle to the development of algebraic idess.

Even when the calculator is not alowed in the test (aswasthe
casein one of the Key Stage 2 papersin 1996) thisisnot likely
to affect the ways in which the pupils solve this type of
problem. Asillustrated in the above pupil’s work some pupils
use a mental or paper ‘triad and improvement’ method when
tested on this type of question. From an algebraic perspective
it is not a question of mental or calculator strategy, but which
mental or which calculator strategy. It seems as if the
seemingly ‘good ideas for calculator use in the primary
classroom did not take into account the ways in which these
would impact on the development of algebra. It isnot so much
the use of calculators at primary school which is of concern,

® These scripts were collected as part of a project ‘Being a Pupil in England and France: findings from a comparative study’,

Osborn et al. (1996).
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but their use in conjunction with certain types of problemsand
methods of solution. Thisagain relatesto therole of the teacher.

Currently there is an over-application for primary PGCE
teacher training. The evidence from those recently accepted on
one primary teacher-training course suggests that only
approximately one tenth of these applicants have studied a
mathematics-related degree with almost none of these with a
degree in mathematics alone. We suggest that with such over-
application it should be recommended that a much larger
proportion of these potentia primary teachers should have
studied a mathematics-related degree. We recognize that this
recommendation needs further investigation and that the
possession of a degree in mathematics does not guarantee
effective teaching of mathematics in primary schools. We also
recommend that primary schoolteachers should have a higher
qudification in mathematics than grade C at GCSE, which
could involve studying mathematics to the age of 18/19inline
with recommendations made in the Dearing Report.

To support existing primary teachers we recommend funding
for in-service training on the lines of the GEST Grant 3 20-
day courses which were positively evaluated by Ofsted.

2.3 Algebra and modes of algebraic activity

As discussed in Section 1.4, one way of organizing algebraic
activity is to use the following subheadings: Generational
activities;, transformational rule-based activities; global,
meta-level activities. These are eaborated below. However,
from the point of view of the curriculum they cannot be
separated. It is particularly important that teachers encourage
globa metalevel activities as pupils work on generational
activities, otherwise their algebraic purpose will be lost.

(i) Generational activities which involve:

e generalizing from arithmetic;

e generalizing from patterns and sequences,

e generating symbolic expressions and equations
which represent quantitative situations;

e generating expressions of the rules governing
numerical relationships.

When working on these activities the emphasis should be on
meta-level activities, such as awareness of the relationship
between general rules and the structure of the problem,
relating pattern to problem, predicting and justifying.

(if) Transformational activities which involve:

e manipulating and simplifying algebraic expressions
to include collecting like terms, factorizing;

e working with inverse operations;

e solving equations and inequalities with an emphasis
on the notion of equations as independent ‘ objects
which could themselves be manipulated, working
with the unknown;

e shifting between different representations of function,
including tabular, graphical and symbolic.
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These activities are concerned with equivalence, form and
the preservation of essence. They require an appreciation of
the need to adhere to well-defined rules and the notion of
mathematical expressions as objectsin their own right. It is
necessary to build up through repeated exposure to these
mathematical objects, awider symbol sense in which pupils
gain afeel and intuition for the ways in which such objects
relate to each other.

(iii) Global, meta-level activities which involve:

awareness of mathematical structure;

awareness of constraints of the problems situation;
anticipation and working backwards;
problem-solving;

explaining and justifying.

These activities transcend all of mathematics.

Fig. 2.8 presents an overview of the essential elements of a
pre-16 algebra curriculum and the interrel ationship between
these elements.

Foundations for early-algebra

We have identified a range of activities which we consider
to be precursors to algebra and which should take place both
in the primary school and secondary school. The activities
here are characterized by:

() Expressing relationships involving more than one
operation. These rules could be expressed in words or
symbols. If symbols are used they should be viewed as
a succinct form for expressing the rules.

(b) Working with inverse arithmetic operations.

(c) Working with relationships expressed in number patterns:
forming and continuing terms in a number sequence.

(d) Working with relationships expressed in figurative
patterns: copying, continuing, devising, recording,
describing in words and translation from words back to
patterns and predicting.

(e) Focusing on language as a means of precisaly expressing
relationships.

(f) Awareness of mathematical constraints.

2.4 The impact of new technologies

As discussed in Section 1.5, new technologies will inevitably
impact on pre-16 school-mathematics. Work with interactive
environments such as spreadsheets, programming languages
and graphics cdculators has shown pupils can learn the
symbolic aspects of algebra as a language of communication.
This points to ways of introducing algebra as a symbolic code
through use in communication. Within certain computer
environments the grammar of the algebraic language can be
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Arithmetic
with Function
Numbers
understanding equivalent
forme.g. y=f(x) form
12=3x4 Relationships Non-linear functional
= 12=4 (relationships)
3 between Sequences
5+5+ =5 etc Recursive functions
Genal torm Variables
Sequences
Formulae - in words
Arithmetic - in symbols
with Equations Graphs
Symbols Inequalities
Understanding equivalent form eg. Co-ordinates
a=bxc Graphs of functions
= .Aa=c ec. - linear
b - quadratic
General terms Graphical solution of equations
Sequences Relationships expressed graphically
Manipulation of symbols,
factorising, changing the subject etc.

Fig. 2.8 Diagramatic view of algebra for pre-16-year-old pupils

learned through feedback from the computer. Thisis easier
to do with computers than paper because the computer will
not allow you to enter incorrect syntactical expressions. In
addition pupils are likely to be more resistant to feedback
from a teacher telling them about syntactical errors than to
feedback from a computer.

However, it is possible for the teacher to organize classroom
activities so that pupils do receive feedback on the way to
use the algebra language, through, for example, group work
in which communication on paper is afocus, or whole class
discussion orchestrated by the teacher.

Within this report we have claimed that the ways in which
‘good’ curriculum ideas such as investigations and
exploratory work with calculators become institutionalized
in the curriculum produce learning effects which their
advocates would not have predicted. This is likely also to

become the case with the use of computers. So, for
example, work with spreadsheets could become
transformed into an ineffective (from the point of view of
learning mathematics) institutionalized practice. This
implies the need for ongoing research and development as
opposed to the launching of anew curriculum ideawhichis
expected to radically change everything which was
previously considered ‘bad’ practice.

It is mathematics and not the technology which should
determine where the teaching emphasis is placed. The
arrival of algebraically competent technology could change
the ways in which we teach. Also tied to these pointsis the
issue of how we then assess work with new technologies.
We urgently need more research in this area.
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2.5 International comparisons

As discussed in Appendix 1.2 analysis of test items and
curriculum materias used with 10-11-year-old pupils and
15-16-year-old pupils in France® and Germany has shown
that:

e French and German primary school pupils are not
being explicitly asked to use trial and improvement
methods to solve problems.

e French and German pupils at GCSE equivalent are
expected to reason through whole questions and do
not have the questions broken down into steps asis
the case in GCSE.

e French and German pre-16 courses place more
emphasis on the rule-based transformational aspects
of algebraic activity than is the case in England and
Wales.

e The French Brevet places emphasis on mathematical
structure in that pupils are asked to present some
answer in a particular form as opposed to being
asked to complete the process of computation.

2.6 Summary

In conclusion, we maintain that the current algebra
curriculum for the under-16s, is in need of substantial
overhaul. The National Curriculum was an attempt to
improve the teaching and learning of mathematics in
England and Wales. We maintain that in the case of algebra,
this particular form of National Curriculum with the
attendant Key Stage testing and publishing of league tables
has not had this desired effect. We make the following
recommendations:

1. More emphasis needs to be placed on the learning of
the algebraic language in the pre-16 curriculum. As
with natural language, learning the rules of the
algebra language occurs through extensive use and
feedback on incorrect use. This does not imply a
return to the ‘traditional’ routine approaches to
introducing the use of symbols, but it does imply
extensive use through class discussion and written
work over time.

2. The National Curriculum is currently too unspecific
and lacking in substance in relation to algebra. The
algebra component needs to be expanded and
elucidated and also reorganized. The group were
especialy critical of the woolly and all-encompassing
wording of statement 3c of the Algebra Attainment
target for Key Stage 3 and 4 on page 15 of the current

Mathematics National Curriculum which states:

Pupils should be given opportunities to: (3c)
manipulate algebraic expressions;, form and
manipulate equations or inequalities in order to
solve problems.

The levels of attainment within the National
Curriculum work against the teaching and learning of
algebra. The structuring of the National Curriculum
should take into account both the need to preserve
mathematical coherence and a consideration of how
pupils learn algebra. The notion of levels on which this
National Curriculum is predicated needs critical
appraisal. For this to happen mathematicians and
mathematics educators have to work together.

There is a need to emphasize the meta-level reasoning
aspects of agebraic work and to make this part of teaching.
Insufficient attention is currently given to this aspect.
Pettern-spotting isin danger of becoming anew orthodoxy
which all too often does not appear to havedirect linkswith
algebraic structure. Future publications concerned with the
teaching and learning of agebra for pre-16-year-olds
should make the need for such links a priority.

There is a need to see greater credit and recognition
given in all assessments related to algebra to the
reasoning and argument elements and consequentially
less credit to any ‘final answer’. However, aspects of
problem-solving should not be inappropriately turned
into objects of assessment (for example, ‘pattern-
spotting’ should not be explicitly assessed).

Too littleis made of the opportunitiesfor recognizing the
rich connections between algebraic processes and other
subjects. The use of generalized statements and/or
descriptions in other areas of mathematics and other
subjects which are then interpreted to create new
perspectives should be encouraged, but the group also
recognizes that work is needed to identify these so as to
help teachers and learners to maximize their experiences.
Algebra should not be seen in isolation from these other
subjects. The group urges that resources be made
available to allow this identification work to be done.

Teachers of younger and later developing children need
support and guidance in recognizing the essential
nature of algebraic structure. Work needs to be done to
develop materials and courses to achieve thisand so the
group recommends that resources be made available to
facilitate this. In particular, funding should be made

% Personal communications with Claude Bodin suggests that French mathematics examinations are beginning to embed questions in more

‘realistic’ situations as aresult of current reforms.
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available for in-service teacher training.

8. Too little attention is given to work on the idea of
algebraic equivalence. We recommend that a higher
priority is given to such work so that learners become
much more familiar with recognizing equivalent
statements such as:

3><4:12and1_32:4

9. Interactive symbolic computer environments (for
example spreadsheets and graphic calculators) offer
new ways of introducing algebraic ideas to pre-16
pupils. In particular they support teachers to introduce
algebraic ideas such as variable and working with
symbols. However, teachers have to teach pupils to
make links between computer-based and paper-based
work. Also it has to be recognized that it is not the tool,
but how the tool is used that is important.

3. The 16-19 Curriculum: A-level

In England and Wales there are two main routes to higher
education, the A-level and the vocational route. Whereas A-
levels have been the traditional entry point to higher
education, increasingly more students are entering via the
vocationa route. This section of the report is concerned
with the teaching and learning of algebra within A-level
courses. Vocational courses are discussed in Section 4.

3.1 The impact of GCSE and the National
Curriculum

Asdiscussed in the previous section, in the stages leading to
GCSE more emphasis should be placed on algebra,
algebraic thinking, symbolization and manipulation. Global
meta-level activities, such as finding structure, justifying
and proving, have received minimal attention at the pre-16
level. Thereis also a strongly held view that the concept of
proof is to some extent unnecessary, because its place has
largely been taken over by investigative work. As
emphasized in the previous section, investigative activity
only makes sense mathematically if it does include this
aspect of justification. The levels within Attainment Target
1 do not encourage teachers to include this type of meta-
level activity in their teaching of more open-ended
problems.

Questions on GCSE papers are often framed in such away that
they actually discourage the algebraic approaches that would
be the most effective way of tackling a problem. Students are
often explicitly asked to use ‘trial and improvement’ methods
to solve equations and marks are only obtained if this method
is used. Pupils are rarely explicitly asked to use algebraic
methods. GCSE questions which test algebra are often
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presented in an inappropriate ‘realistic’ context which again
detracts from the algebraic aspect of a problem.

GCSE questions tend to structure a problem in such a way
that a pupil rarely needs to use initiative to decide how to
solve a problem. The current assessment trend of sub-
dividing questions within GCSE does not encourage
anticipation and thinking backwards which are two subtle
aspects of algebraic activity.

Moreover, the National Curriculum levels can have the
effect of restricting a pupil’s experience of agebra before
entering an A-level course in that the most substantial
algebraic ideas are specified in the higher levels and
teachers tend to delay the teaching of these ideas until
previous levels have been achieved. Our argument is that
many of these algebraic ideas (for example: level 8 ‘pupils
manipulate algebraic formulag’) should be introduced at an
earlier stage of the 11-16 curriculum.

When GCSE was first introduced, recruitment to A-level
mathematics was expected to be from pupils who obtained
grades A or B. Nowadays students with a grade C can also
be accepted on A-level courses. A recent study has shown
that in 1994 of al those (22,693) pupils who attempted
A-level mathematics after a grade C at GCSE only 17%
obtained a good grade (i.e. C or higher), and 59% did not
achieve agrade at all (William, 1996, p. 41).

The situation is even worse for pupils who have studied the
Intermediate Tier at GCSE, because thistier contains hardly
anything which could be called algebra. Yet pupils who
achieve pass grades at this tier of entry can now form a
sizeable proportion of the pupilsin an A-level class. Pupils
with a B grade at GCSE could have studied this
Intermediate Tier. Thiswas not possible when GCSE tiering
was first introduced in 1988.

This issue is becoming compounded in several ways. It has
been suggested that one effect of league tables is that many
schools are not entering even their most competent pupils
for the Higher Tier of entry (Dearing, 1996). Thisis because
a pupil has a better chance of passing with a C or B grade
when entered for the Intermediate Tier and so schools ‘ play
safe’. From the A-level perspective this leads to a disastrous
situation. Recruitment from the Intermediate Tier has led to
a particular problem for FE colleges and sixth-form
colleges, because pupils enter these colleges with a
certificate simply indicating the grade achieved but not the
tier of entry. Thus their GCSE grade does not provide any
indication of their competence in algebra.

A study by the IMC and SCAA (Brown, 1996), which was
set up to investigate the step between GCSE and A-level in
mathematics, points out that * Both teachers and examination
scripts attest to the fact that candidates can obtain a GCSE
Grade A with few manipulative algebraic skills, athough
algebraic skills are essential and fundamental at A-level’.
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3.2 Entry requirements for A-level

Nowadays many pupils cannot cope with the algebraic
demands of A-level mathematics without some sort of
‘extra’ algebra. Currently this ‘extra’ algebra is being
incorporated in a number of different ways throughout
A-level courses. We believe that this situation is not
satisfactory because with this approach pupils are less likely
to develop adequate algebraic confidence and competence
before entering higher education. In addition other aspects
of the A-level curriculum receive less attention as aresult of
having to insert the algebra which was previously in O-level
into the A-level course (for example, solving quadratic
equations).

We maintain that there are only two possible alternatives to
this ‘algebra gap’ between GCSE and A-level mathematics.

The pre-16 curriculum should incorporate more algebra
than that set out in the National Curriculum. The issue still
remains about whether this should be ‘algebra for all’ or
only for those who will need it within post-16 courses.
However, more and more pupils are progressing to post-16
courses which require confidence and competence with
algebra. In this section of the report we are only concerned
with pupils who progress to academic A-levels, but similar
issues arise with those pupils who enter vocational courses
as will be discussed in Section 4.

Post-16 institutions should develop ‘bridging’ algebra
courses for some students before they start A-level. MEI
have recently had validated the Foundations of Advanced
Mathematics Course, which credits students with bridging
the National Curriculum gap from level 7 (the level many
students have achieved at GCSE) to level 9 which is the
more appropriate level from which to start an A-level course
in mathematics. There are problems with this approach:
How much time will a student spend on the A-level
programme? Can it be done in the traditional two years?
How does a teacher cope with the vast achievement range
now spread from A* at the Higher Tier to C a the
Intermediate Tier? Is such a notable range class fair to any
of the students in it? If the weaker students are separated
from the rest and given special attention are they seen as
non-starters before they even begin? If additional support is
to be provided where will the funding come from and will
other courses suffer as a result of funds being reduced to
support this activity? Clearly, there is a whole range of
issues here for SCAA and the awarding bodies to consider.

The Dearing Review has made the recommendations that
there ought to be bridging courses between GCSE and
A-level (Recommendation 133) and a new GCSE short
course in additional mathematics, limited to grades A*—C,
which should be taken by all students who wish to do A-
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level mathematics (Recommendation 132). This idea of an
additional GCSE in mathematics might appear to be a
powerful one because it provides an incentive for the more
able students and could actually help boost recruitment for
AS- or A-level further mathematics. Nevertheless, thought
needs to be given by SCAA to this recommendation. Its
implementation could actually backfire badly. As is the
case with tier of entry at GCSE, the effect of league tables
could be that if schools do not have to enter their students
for this new examination, many will not and so students
who could succeed at it will be denied the opportunity to do
so. This would have the reverse effect to that intended: it
could further decrease the numbers doing A-level
mathematics. It is also a particularly British ‘elitist’
solution when compared with the pre-16 mathematics
experiences of students in France and Germany (see
Appendix 1.2 of the report). In fact in France the Brevet
examination (taken by pupils of asimilar age to the GCSE)
has very little importance and is not used as an entry point
to the Baccalaureat. As was intended to be the case in the
independent school system, students who were going on to
study A-level were not entered for an O-level in that
subject, because teachers were teaching for A-level and
viewed the O-level examination as a potential saddle-point
in achievement. Moreover, constructing another
examination hurdle for A-level does not address the need to
incorporate more algebra in a diffused way throughout the
11-16 curriculum.

3.3 The changing A-level scene

We discuss below the main changes to the A-level
curriculum which are affecting the teaching and learning of
algebra.

Changesin attitudes towards algebra

Much of the algebra content of O-level has now entered
into the first year of an A-level course. However, when
algebraisintroduced in A-level it is often camouflaged and
may not even be explicitly called algebra. We suggest that
this relates to a desire to de-emphasize algebra within the
school mathematics curriculum, as already discussed in
Section 1.4 of the report. For example, in the MEI course,
the chapter dealing with introductory algebraiscalled ‘' The
Tools of Problem-Solving'. All the other chapters in the
book have nameswhich refer to their mathematical content,
for example Co-ordinate Geometry, Trigonometry and
Integration. In the new Nuffield A-level scheme algebrahas
been camouflaged by the increasing amount of words
which surround it and by a decrease in the number of
practice examples which students are asked to carry out.
For example in Chapter 1 of Book 3, Equations and
Inequalities, the algebraic language is surrounded by so
much text in English that it would be difficult for a student
to get a visual feel for an algebraic exposition. As is the
case with other new A-level schemes (for example SMP
16-19) the use of graphical methods receives more
attention at A-level than it would have done 15 years ago



and this has resulted in a decreasing emphasis on algebra.
The issue is a question of balance as graphical methods are
also valuable.

Changesin the student populations

Many more students stay at school to study A-levels than
was the case 15 years ago. The number of those who choose
to study A-level mathematics relatively decreased (as a
proportion of number of students studying A-level) and
absolutely decreased between 1985 and 1995.

Year No. of students studying
A-level mathematics
1985 88,000
1990 69,500
1992 66,459
1993 59,010
1994 56,000
1995 56,695
1996 61,442

A-level mathematics has been changing partly as aresult of
attempts to encourage more students to study the subject.
(The absolute number of students increased from 1995 to
1996 and it istoo early to say if thisisageneral trend.) This
isresulting in adifferent ‘ client’” group compared to 15 years

ago.

Changesto the nature of school mathematics

These are similar to those discussed within the pre-16
curriculum; that is, more emphasis on problem-solving, and
open investigational approaches. Thereis more emphasison
statistics and data handling, but less emphasis on such topics
as co-ordinate geometry, geometry and mechanics.
Mechanics, for example, used to provide students with
opportunities to practise and become technicaly fluent in
the use of algebra (Williams, 1996) which is not the case
with statistics. Many of these changes can be traced to the
recommendations in the Cockcroft Report on the role of
contextualizing in mathematics. This is reflected in the
A-level examination questions as illustrated by the 1995
SMP 16-19 examination, taken at the end of a two year
course (Appendix 3.1). Questions tend to place more
emphasis on the generational activities of algebra; that is, on
the construction or presentation of equations which
represent quantitative problem situations (for example,
Questions 2 and 3). In many cases when students have to
construct equations for themselves they are provided with
considerable support (for example, Question 5). There is
minimal emphasis on the transformational activities of
algebra. The aim of contextualizing problems within
realistic situations can become contrived (for example,
Question 6) and often gets in the way of a potential
algebraic treatment of the problem.

Changesin the content of A-level
One of the key features of the present curriculum is the
Common Core for A-level mathematics. This was first
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introduced in the early 1980s and has since undergone
severa revisions. The core accounts for 50% of the A-level
syllabus and 70% of the AS syllabus.

At each revision some topics have been edged out to make
way for additional material and it is claimed that students
have to be familiar with a wider range of mathematics than
ever before. This is true to a limited extent, but it gives a
false picture. Looked at over time, the removals from the
syllabus far outweigh the additions. Geoffrey Howson, in
the Gresham College seminar ‘ The Mathematical Ability of
School Leavers (December 1996) cites changes to the new
A-level syllabuses for 1996 and tabulates to what extent the
syllabuses (including non-core material) now cover material
that was in the previous core but not in the present core (see
Appendix 3.2). There is a marked variation between the
different examining boards here, sufficiently so to be
worrying.

The losses are considerable. Going back ten years or so the
list of deletionswould include much more, including many
topics that are important from an algebraic point of view.
Whatever the reason for removing these topics from the
curriculum, the resultant effect is a de-emphasis on topics
which were likely to inculcate an elaborated symbol sense.
Some examples of A-level question papers from 1986 are
included in Appendix 3.3. Those questions marked with an
asterisk (*) would not be possible in today’s papers on the
grounds of syllabus content alone. The issue of what
students had to know in order to pass these examinations
is complex. Current examinations are supposed to test
what students know. However, it does not make sense to
divide mathematical knowledge up in such a reductionist
way and it is not clear that the current approach is any
more effective in testing what students know than the
previous approach.

The Dearing Review recommends that the A-level Common
Core needs to be reconsidered and that SCAA and the
awarding bodies should enter into discussion to determine
what such a core should be. SCAA is to draw on the advice
of the Mathematics and Science Consultative Group that
was set up by SCAA in March 1996 with the approval of the
Secretary of State. In discussing the Common Core it is
important to ask :

To what extent does the Common Core contribute
towards a coherent and relational understanding of
mathematics?

and

To what extent does the Common Core provide a
coherent body of knowledge which will be of value for
students pursuing degree courses in maths, science or
engineering (or any other subject with a broad-based
mathematical content) and also to those who will use
their knowledge of advanced mathematics in
employment?
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In Section 3.5 we discuss a possible way of restructuring the
Common Core.

Changes to the nature and extent of algebra being
examined in A-level

In comparing A-level mathematics questions from current
(1994 and 1995) examinations and those from ten years ago
we were struck by the fact that there is amost as much
variability between boards asthere are changes over timefrom
the point of view of what algebraisbeing examined (see Hirgt,
1996 for further discussion of this issue). Some examinations
represent new courses which did not exist ten years ago (for
example Oxford and Cambridge's examination for the SMP
16-19 course and Oxford's examination for the Nuffield
course). Thereisalso theissue of modularity which we discuss
later. For some examination boards there has been little
discernible change (for example NEAB). However, some of
these examinations are more influential than othersin terms of
the numbers of studentswho enter them. Overall thefollowing
conclusions can be made:

Some boards lead students through examination questions
at A-level in a step by step way and provide support which
makes it unlikely that they will attempt to get a sense of the
whole question and work in an anticipatory manner, which
is so important in agebra. This is illustrated by the
following question Fig. 3.1 taken from the MEI Specimen
Paper 1994. Part (i) of this question tells the student to
complete the square, so that they do not have to work this
out for themselves. They are then provided with information
so that they do not have to think for themselves about the
structure of the completed square form and work backwards
to find the value of ‘a’.

(time allocation 15 minutes; 20% of paper total)

(i) Show that X+ 4x + 7= (x + 2)* + a, where aisto be
determined.

(i) Sketch the graph of y = X2 + 4x + 7, giving the equation
of the axis of symmetry and the co-ordinates of the
vertex.

The function fisdefined by f: x 0 x2+ 4x+ 7 and has asiits
domain the set of all real numbers.

(iii) Find the range of f.

(iv) Explain with reference to your sketch, why f has no

inverse with its given domain. Suggest a domain for f for
which it has an inverse.

Fig. 3.1 Excerpt from MEI A-Level Specimen Paper 1994

As the following solution shows, the first part of the
problem can be solved by working forwards to find a.

X¥+AX+7=(X+2)?2+a
O X¥+4x+ 7=xX+4x+4+a
O 7=4+a
O a=3
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Ox+4x+7=(Xx+272+3

Many questions on the pure mathematics papers emphasize
applying mathematics to practical situations (see for
example questions from SMP 16-19, 1995 in Appendix 3.1)
which was not the case ten years ago. Algebra and applying
mathematics to practical situations are both crucia aspects of
mathematics education—but they are distinct aspects. Using
algebraic symbolism to model a practical situation is not
algebra.

Students are often provided with subtle support when working
with the transformational rule-based aspects of algebra
Congder, for example, question 9 of SMP 1619 (Fig. 3.2). In
part (b) of this question pupils are presented with support with
factorizing the cubic in terms of being asked to find the
coefficients of the quadratic equation (a, b and c).

9 Thefunction f(x) = 3¢ —11x¢—95x + 175 has 3 linear factors.

(8) Find f(5) and use your result to explain why (x—5) isnot
afactor of f(x).

(b) The function f(x) may be written in the form

f(X) = (x + 5) (& + bx + ¢).
Find the values of a, b and ¢ and hence write f(x) as the
product of its three linear factors.

(c) Find the values of x for which f(x) = 0.

Fig. 3.2 Question 9 from SMP A-Level 1995

Some questions in current A-level papers would previously
have been examined within the old O-level (for example,
Questions 2 and 3 in London P1, Appendix 3.4 and Fig 3.3,
and Fig 3.4). What was examined in the old O-level varied
between boards, but overall a greater degree of algebraic
fluency was required in O-level than in the Advanced Tier
of GCSE (Sutherland & Pozzi, 1995). Examples of
questions from O-level papers are given in Appendix 3.5.

2. The straight line passing through the point P(2, 1) and the
point Q(k, 11) has gradient — 5/12

(a) Find an equation of thelinein terms of x and y only.
(b) Determine the value of k.
(c) Calculate the length of the line segment PQ.

Fig. 3.3 Question 2 from London A-Level P1, May 1995

3. Show that the elimination of x from the simultaneous

equations
X—2y=1,
Xy-y' =8,
produces the equation
5y +3y—8=0.

Solve this quadratic equation and hence find the pairs (X,
y) for which the simultaneous equations are satisfied.

Fig. 3.4 Question 3 from London A-Level P1, May 1995



These changes to the examination papers are resulting in
less algebra being examined with alikely resultant effect on
what is being taught at A-level.
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Changes to the assessment mechanisms of A-level
mathematics

Many of the recent changes are being made to make
examinations more student-oriented (modularity, shorter
examinations on areduced syllabus, shorter questions, more
structured questions almost telling the students what to do,
more contextualization, more helpful formula books and so
on).

Many syllabuses have become modular. Thisisacontroversia
area because there are differencesin the waysin which boards
have approached modularity. For some, but not all boards,
modular papers present students with shorter questions and do
not examine topics to the same depth as before.

The examinations tend to be of shorter duration than before
(typically 1-1Y/; hours for each paper). Linear syllabuses
still have longer exam papers (2/-~3Y. hours). There are
serious discrepancies between the boards here. ULEAC
pure mathematics module papers last 1%, hours and
students, in June 1996, had to attempt ten questions on
module P1 and nine questions on module P2. The MEI
module papers, on the other hand, all last for 1%, hours and
students have to attempt only five questions. Within the
UCLES modular examination, each module finishes with a
long question and overall, for this board, students now take
9 hours of examinations as opposed to the previous 6 hours.

For the standard A-level mathematics (in which the pure
mathematics accounts for half the syllabus and applications
accounts for the other half), the ULEAC students have to take
two pure mathematics modules with atotal examination time
of 3 hours; the MEI students have to study three modules and
a comprehension paper (lasting up to one hour) in pure
mathematics, giving atotal written examination time of up to
4%, hours, and they also have to study coursework. The SMP
scheme is different yet again, as isthe AEB scheme.

However many teachers report the positive effects of
modularity. Early feedback in the A-level course can be very
important for students who might otherwise have ‘wasted’
the first year of the 6th form; weaker students can more
readily manage the smaller chunks of mathematics required
for a module which appears to be having an effect on the
number of students studying A-level mathematics
(evidenced by the increase in numbers in 1996); the
integration of AS- with A-level is easier in the modular
system; the potential exists to link chunks of post-16
mathematics with other qualifications, such as GNVQ.

As with many educational reformsin England and Wales we
do appear to be ‘ experimenting on the job’ . Our concern here
is not with modularity as such, but with the extremely
variable approach to what constitutes a modular examination.
This suggests that more research is needed in order to
understand the effects of form of assessment on the nature of
mathematics which is being assessed.
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Theimpact of new technology

Asisthe case of the pre-16 courses, A-level isresponding to
new technologies. The new Nuffield A-level, for example,
incorporates the use of graphic calculators throughout the
course as does the SMP 16-19 course. The influence of
these new technologies changes the emphasis on the
mathematics taught. For example more emphasis on
graphical methods can result in less emphasis on algebraic
methods, although this does not have to be the case. New
technologies have made mathematical modelling more
accessible at A-level. Although it can be argued that thisis
a very vauable part of the new A-level, it must be
recognized that without an adequate algebraic background
modelling will aways be limited to extremely simple
situations.

Computer algebra systems are making the situation even
more complex. Do they imply that more or less algebra is
needed? Thisis discussed in Section 3.8.

3.4 A-level further mathematics

The number of students taking A-level further mathematicsis
now approximately 5,500 as opposed to 13,000 in 1980
(although there has been a dight increase over the last two
years). This has had an effect on the recruitment of studentson
to university degree coursesin mathematics. In the pagt, it was
assumed that students for mathematics degrees would enter
university with a double award in mathematics at
A-level. Nowadays, students are often accepted on to such
courses with only a single mathematics qualification at
A-level. Thisis undoubtedly an effect of the Cockcroft Report
(1982) which recommended that ‘We hope too that those who
sdect students for admissions to Higher Education will
recognise that there are sound educationa aswell as economic
reasons for offering only single-subject mathematics at A-
level and will not put either direct or indirect pressure on
schools which have only limited teaching resources in
mathematics to provide double-subject courses, especially for
students to whom it is not well suited’ (para 588).

The universities have adjusted their courses to use the first
year as a levelling course to take account of the differing
backgrounds of their students, and many have initiated four-
year degrees. Nevertheless, as the recent report ‘ Tackling
the Mathematics Problem’ (1995) makes clear, higher
education is far from happy with this current situation.

The Dearing Review proposes that more students should be
encouraged to study either a full A-level further
mathematics or to go half-way and study an AS-level in
further mathematics (Recommendation 135). This is an
important suggestion that should be followed through with
positive action. Many schools and colleges are finding it
difficult to support study of further mathematics because of
the small numbers of studentsinvolved. Students usually do
further mathematics as a subject beyond their normal three-
subject choice of A-levels. Funding, at least from the
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Further Education Funding Council (FEFC) which funds all
colleges of Further Education and all Sixth Form Colleges,
is problematical; the FEFC allocates only a fraction of its
normal A-level funding unit per student for a fourth A-level
subject. This does not cause problems where the student
does a non-mathematical subject as the fourth subject
because the student does this subject in a class that already
exists. However, with further mathematics a special class
has to be created. Small numbers of students are therefore
not viable as independent groups.

A further problem with further mathematics is that its take-
up will not fit in readily with Dearing's proposal for the
National Advanced Diploma award. Students who opt to
study further mathematics will be disadvantaged because
they will not be able to generate the additional breadth of
study to qualify for the award.

3.5 Algebra and modes of algebraic activity at A-level

This report is about algebra. Interpreting what constitutes
algebraisits main focus. As with the pre-16 curriculum, the
A-leve curriculum should be concerned with the following
modes of algebraic activity namely (i) generationa activities,
(i) transformational activities and (iii) global meta-level
activities (Kieran, 1996). At A-level, algebra becomes
predominantly symbolic in nature. A-level mathematics
students need to be able to ‘think with’ symbols.

Also at A-level the content of algebra cannot be separated
from much of what is considered to be pure mathematics,
for example, calculus and trigonometry. In addition, algebra
asatool isused within every other more ‘applied’ branch of
A-level mathematics including statistics and mechanics.

If the Common Core is to be revisited, as the Dearing
Review proposes, then instead of using content as a means
of defining the Core, perhaps the all-important criterion
should be modes of algebraic activity. As stressed above
these should permeate aspects of content such as co-
ordinate geometry, functions, sequences and series,
trigonometry, exponential and logarithms, calculus, etc.
Below we outline what we consider to be the desirable
algebraic activities that should be built into this approach:

e developing fluency in agebraic manipulation and
transformation;

e developing facility with notation and understanding
the importance of notation;

e working to precise definitions, learning the meaning
of mathematical language;

e awareness and appreciation of the importance of
mathematical structure;

o developing flexibility of viewpoint and a fluency to
transform to different representations;

e using symbolic forms as mathematical objectswith an
existence of their own, independent of any explicit
physical reference;



e doing and undoing—the significance of inverse

operations;

awareness of definitions and constraints;

the importance of generalization;

establishing relationships;

the importance of precision and elegance in

mathematical exposition;

the role of both deductive and inductive logic;

concepts of proof;

e thedevelopment of acritical facility, so that students
can expose the fallacy of an illogica argument or
paradox;

e reading mathematical texts and communicating
mathematical ideas.

Using these ideas it would be possible to construct a pure
mathematics syllabus which included this within all the key
areas of importance—numbers (including complex
numbers), sets, binary operations (including concepts of
commutativity, associativity and distributivity), functions
(including polynomial, rational, circular, exponential,
logarithmic and any other suitably defined functions),
graphical representations, series, limits, Cartesian geometry,
parametric forms, calculus, vector algebra and geometry,
linear algebra, and other topics—which would help to bind
the subject together in a coherent manner.

3.6 International comparisons

England and Wales have long had an intensely specialized
curriculum for post-16-year-olds. This has led to the view
that somehow we produce a better, more knowledgeable
group of students at the age of 18 or 19. But what is the
evidence for this?

Many academic students in England and Wales do no
mathematics beyond GCSE, even though they may have
obtained a very high grade in mathematics at GCSE. These
students have chosen to do three combinations of
humanities or arts subjects for A-level. There is some
evidence, cited in ‘ The Take-Up of Advanced Mathematics
and Science Courses (NFER/SCAA, June 1996) that an
increasing number of students is mixing A-level
mathematics with two non-scientific subjects. The Dearing
Review could have recommended a compulsory broadening
of A-level studies so that everyone had to study mathematics
through to the end of schooling, but it did not do so.

In France and Germany, for example, students follow a
much broader curriculum than here and the vast majority of
students have to study mathematics until they leave school.
(see Appendix 1.2). This allows for more informed
decisions about choosing degree courses, or employment,
which involve mathematicsin one way or another. The main
conclusions from our comparisons of pre-university courses
in England and Wales, Germany and France can be
summarized as:
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e The examinations that speciaize in mathematics in
Germany (L eistungskurs) and France (Bac S) aremore
demanding algebraically than further mathematics
A-level.

e The manipulative algebraic skills required in single
A-level mathematics are comparable with those in
the non-mathematics specialist pre-university
qualifications in Germany (Grundkurs).

e The Grundkurs requires significantly greater skill in
formulating problems algebraically than does single
mathematics A-level.

e Mathematics is compulsory for the vast majority of
16-19 students in Germany and France, not just
those specializing in mathematics (although in
Germany not all of these students are assessed on the
basis of the written examination).

Whereas we recognize that our A-level examination
assesses a wider range of mathematics than similar
examinationsin France and Germany, the issue here is about
how important it isto teach and assess algebra. It is possible
to criticize the German and French examinations for placing
too much emphasis on formal mathematics/algebra.
However, the difference in approaches is now so striking
that we maintain that our shift away from algebra at A-level
is a cause for concern.

The International Baccalaureat makes for another
interesting comparison. Universities in the UK used to be
very keen on the IB, but nowadays it is harder to get good
grades in the IB than in A-level mathematics and
consequently schools are finding that less students are
choosing to study for the IB. Appendix 3.6 shows currently
agreed International Baccalaureat/A-level eguivalences.
Again league tables are the driving force behind which
examination a student studies as opposed to educational
considerations.

3.7 Teaching and ways of learning

Teaching time for A-level is being cut back and there is an
increasing tendency to teach to the syllabus, and specifically to
the examination of each particular syllabus. This teaching to
the syllabus is also reinforced by fractioning the subject up
into modular units. One issue which needs to be analysed
more fully is the potential fragmentation of algebra through
the modular approach. The module breaks sometimes appear
arbitrary and inhibit the natural development of the subject
matter. Very often the extension of atopic will take placein a
later module. The essence of mathematics is to encapsulate
and generdize. At the very moment when the teacher would
like to do this the constraints of the syllabus prevent it. Thisis
smilar to the issue of the straight-jacket effect of levels of
atainment at the pre-16 level, discussed in Section 2.

The teacher is central to an effective delivery of A-level
mathematics, because he or she acts as a catalyst for
discussion and the clarification of ideas; the teacher helpsto
establish unexpected connections between different topics
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and helps the students to refine their methods of
presentation and to use notation effectively and succinctly.
However, many ingtitutions are now moving away from
teacher-directed lessons to student self-paced learning. The
justification for this approach is that larger numbers of
students can be accommodated in one class and that thisis
no bad thing given the spread of achievement on entry. The
more likely explanation isthat thisis yet another cost-saving
exercise. Textbook schemes at pre-16 which embraced
individualized approaches (for example SMP 11-16) are
now moving away from this approach. Why then should
individualized learning at A-level be considered to be
desirable?

Open-ended projects at A-level encourage students to
pursue their own line of enquiry. This can often work
against the algebraic and more structural aspects of
mathematics. Collection of data and pattern-spotting tend to
become the dominant activity in ways which are similar to
what is happening with mathematical investigations at
GCSE level. For example the following question was set as
an open-ended investigation as part of the SMP 16-19
modular A-level scheme.

The triangular numbers are 1, 3, 6, 10 etc,, i.e. Yon (n+1)
The square numbers are 1, 4, 9, 16 etc., i.e. n?

Which numbers are both triangular and square? The first two
are 1 and 36.

We have analysed one student’s response to this question
(the student received a grade B at A-level). The student’s
solution can be characterized as being an empirical
exploration of the problem (using a spreadsheet) with
numerical verification of specific cases. Even in showing
how one triangular number leads to the next in his
empirically found list, he did not show that this process
always produces a square triangular humber from a given
one. He did not attempt any form of mathematical proof. We
recognize that what one student produced cannot be
generalized but it does show the existence of a phenomena
which needs further investigation. Our analysis of this
problem shows that in fact at A-level an empirical approach
is the only one possible, because other treatments require
mathematical knowledge which is only available at
undergraduate level (see Appendix 3.7 for adiscussion of a
possible solution). We can only conclude that empirical
approaches, as opposed to algebraically related proof, is
what is intended to be taught and examined.

We support the idea of coursework within A-level but are
concerned that some coursework is not encouraging the
transformational and global meta-level aspects of algebraic
activity. In particular, justification and proof should be an
integral part of open-ended investigational work at A-level.
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3.8 The impact of new technologies

Computer algebra systems are a very recent innovation
which could have far reaching effects on A-level
mathematics. Some research is beginning to show that when
these tools are used by experienced teachers they can
support students to develop an understanding of variable
and function (Heid, 1996). However, we believe that it is
important in the UK to take a serious and considered
approach to what can be learned with computer algebra
systems, how this relates to teaching and the type of
problems being solved, and not rush into inappropriately
incorporating their use into the new A-level courses.

We must be careful not to suggest that because CAS can be
used to carry out the manipulative aspects of problem-
solving, that this will inevitably provoke better
mathematical understanding. As discussed throughout the
report, algebraic activity is intra-mathematical and not
related to the real world. Students need to be able to think
with symbolic objects and it is very likely that they learn to
do this by manipulating these objects for themselves. So a
computer environment which carries out the manipulations
for them could detract from a development of the symbol
sense which we have been advocating throughout the report.
For this reason many members of the group were concerned
with some of the comments about the benefits of CAS
which have been made in the recent NCET document,
‘Algebra at A-level’ (1996). More research is needed to
investigate some of the claims being made.

What will be crucial will be how CAS are used and which
problems students are asked to solve. An emphasis on proof
at A-level will become even more important. The challenge
isto find constructive usesfor CAS that actually enhance the
teaching of mathematical concepts. Mathematics should
drive the use of technology and not vice versa. As with all
computer work students' approaches will tend to be
empirica and we need to question how this empirical work
relates to theory and proof.

One possibility might be to use CAS to generate conjectures
and provide plausibility checks that can then be verified by
analytical methods. Exploration of genuinely difficult
problems, such as piecewise algebraic matching of
arbitrarily drawn curves, could be encouraged through
constructive use of CAS. CAS might also be used to help
students develop different strategies for solving problems,
and any tool that helps do thisis beneficial.

The purpose of an A-level mathematics course is to teach
important mathematical concepts. The reasons for this are
numerous, but they should include the fact that mathematicsis
a logical system; that mathematics can make precise,
definitive statements; that mathematics is both an inductive
and a deductive system of reasoning; that mathematics is
interesting in its own right; that mathematics harnessed to
other subjects has tremendous analytical and predictive power.



It isthe mathematicsitself, and not the technology, that should
determine where the teaching emphasisis to be placed.

Some examination boards have tried to introduce
examination papers which explicitly make use of CAS, but
SCAA has put these initiatives on hold as it is felt that they
are premature. Coursework options might be the appropriate
place in which CAS could be introduced.

3.9 Assessment

Current assessment practices in mathematics place more
emphasis on correct answers than on the process of solution,
which is the main emphasis of agebra In what way can
examinations, of any kind, pay enough attention to the processes
of reasoning as opposed to the obtaining of the correct answer?

Students should be judged on their ability to evaluate critically
each link in a chain of reasoning. Faulty reasoning could
provide one sort of framework for probing their understanding
asillustrated by the following sample question:

We wish to solve:

X+5 _5 = 4x=40
X-=7 13 - X
Xx+5-5x-7) - 4x =40
X-=7 13 - X
4x - 40 = 4x-40
7-X 13 - X
7-X = 13 - X
7 = 13

Comment on the reasoning and expose the fallacy.

Students could be tested on their symbol sense as in the
following questions ‘ Take an odd number, square it and then
subtract 1. What can be said about the resulting numbers?
(Arcavi, 1994).

Ideas about assessment cannot be separated from
mathematics itself. Mathematics has to lead assessment and
not vice versa. As discussed throughout this report different
ways of dividing up and presenting questions substantially
changes the mathematics being assessed.

It may well be that students' competence and confidence
with algebra could be improved dramatically if more
attention were to be given to new forms of syllabus design
and assessment. This is a difficult task. To be carried
through successfully it would need collaboration between
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al interested parties across the entire educational spectrum,
including teachers, teacher trainers, academics and
representatives from the awarding bodies and SCAA.

3.10 Summary

A multitude of factors which include new forms of
assessment, the introduction of computers and an emphasis
on making mathematics more relevant have worked
together to nudge out the transformational rule-based and
global meta-level aspects of algebra from the A-level
curriculum. It isnot clear that this was intentional, but given
the evidence that this is the case we cannot be surprised by
the concerns expressed by those in higher education.

Nowadays many students have to devote much valuable
time to the development of algebraic and manipulative skills
at the start of any A-level course, and time throughout the
course has to be found for students to continuously work on
these algebraic activities. Given thissituation it islikely that
many A-level mathematics students never become confident
and competent with algebra. Our analysis of the situation at
A-level leads us to make the following conclusions and
recommendations.

1. Students should not be encountering the manipulative
aspects of algebra at A-level, for the first time. In the
stages leading to A-level more emphasis should be
placed on algebra, algebraic thinking, symbolization
and manipulation. The pre-16 curriculum should
incorporate more agebra than that set out in the
National Curriculum.

2. Post-16 institutions should develop ‘bridging’ agebra
courses for some students before they start A-level.

3. Algebraat A-level should not be camouflaged. If there
are difficulties inherent in the subject then students will
have to face these difficulties.

4. Problem-solving in ‘real’ contexts provokes students to
work in procedural ways in an attempt to find a
quantitative answer as opposed to the intra-mathematical
activity of algebra. In particular, ‘open-ended’ problem
solving at A-level can result in students developing an
empirical approach to mathematics. When working
algebraically students have to suspend for a while a
need to relate to the problem situation.

5. Many current A-level examination questions provide
students with more support with the algebraic aspects
of a problem, or are less demanding algebraically than
was the case 10-15 years ago.

2 Some students also currently follow ONC/OND courses, or other vocational qualifications (Appendix 4.1).
2 Broad equivalencies are described in the Dearing Review (1996, Table 4, p. 8).
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6. The extreme variability between the emphasis on
algebra in different A-level examinations is likely to
result in students entering higher education with
variable experiences of algebra.

7. The vast mgjority of non-mathematics pre-university
students in Germany and France are expected to be
competent with manipulative algebraic skills which are
equivalent to those experienced by students studying a
single A-level mathematics.

8. The incorporation of CAS into A-level should be
treated with caution until more is known about what
mathematical ideas students are likely to learn from
working with these environments.

9. Content should not be separated from modes of
algebraic activity in the A-level common core.

10. More attention should be given to syllabus design and
assessment in order to promote algebraic activity at A-
level.

4. Vocational Provision: 14-19

4.1 Introduction: growth of vocational education

As the impact of expanded provision beyond the end of
compulsory schooling grows, increasing numbers of young
people and mature students are studying applied courses
through General National Vocational Qualifications
(GNVQ), or vocational courses through National Vocational
Courses (NVQ).»

For the purposes of this report we have concentrated on
provision through General National Vocational
Qualifications, which may be awarded at Foundation,
Intermediate or Advanced level .2 All GNVQ students must
pass the core unit ‘Application of Number’ (at the
appropriate level—1, 2 or 3). Engineering GNVQ students
must also study mandatory mathematics specific units.
There is an optional mathematics unit for GNVQ science
students. For many courses some mathematics is inherent
within mandatory or optional units (e.g. Unit 8, BTEC
‘Advanced Health and Social Care’, units within BTEC
‘ Advanced Construction and the Built Environment’).

This section deals with a rapidly changing educational
domain and because of this we have structured the section
in a different way from the others. Recommendations are
made throughout the section and when we feel that there is
not enough known about an issue we call for further
research.

The focus of this part of the report is the mathematical-
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algebraic needs of such ‘vocational’ students. We consider
the relevance of algebra and pre-algebra in respect of their:

e daily life-skills and numeracy (Section 4.2);

e competence in employment and supporting
vocational/GNVQ study (Section 4.3);

e access to higher education from advanced GNVQ
courses (Section 4.4).

4.2 Life skills: numeracy and algebra/pre-algebra

We suggest that it is important for al students to become
confident and competent with certain areas of pre-algebra
and algebra in order to function effectively as citizens
within a society which is increasingly shaped by
mathematics and where problems are increasingly
converted to forms for which there is a calculable solution.

The ability to interpret and formulate problems expressed
symbolically is one which isincreasingly assumed, not |east
the ability to set up a spreadsheet to perform desired
calculations, a task which is standard now for many
administrative staff.

In its earliest expression, this may mean developing an
understanding of the structure and form of number, the
ability to acquire what has been commonly called ‘ number-
sense’ or a ‘feel for number’. So, for example, Evans and
Thorstad (1994) discuss the need for school governors to
understand aspects of percentage and issues such as rate of
inflation and the waysin which their informal practical daily
life knowledge influences their interpretations within a
school budgeting context.

At a more advanced level this would include the ability to
extend such awareness and proficiency to more abstract
symbolically expressed forms. As technology becomes
more widely available, this does not necessarily imply a
proficiency with paper and pencil techniques of ‘traditional
algebra , rather a competence with the sense of algebra and
its use in expressing relationships. For example, the ability
to describe the relationship which exists between girth and
height of a tree and volume of useable timber and the fact
that these might be used to calculate numerical solutions to
a given problem such as estimating the potential timber
production from a given plantation.

Indeed, the growth of IT has led to a greater presentation of
data in visua format, which includes tables and a range of
graphical representations. This makes it important for the
public at large to be able to interpret critically these
representations.

We maintain that the focus of ‘algebrafor citizenship’ ought
to be one which emphasizes a feel for number structure and
pre-algebra, which encourages critical analysis of ‘what is
being said’ and which uses appropriate symbolism within
specific contexts, including I T. It should not focus on formal



algebra.

Teaching and Learning Algebra pre-19

4.3 Competence in employment and supporting
vocational study

Algebraic demands of the applied vocational routes and
NVQ

There is a divison between the technical vocational fields
which requires a significant algebraic component and others
which may require very little in the way of formal algebra
Whichever route they choose, al students enrolled on GNVQ
courses must compl ete the compulsory core skills units.

The *Application of Number’ core units (levels 1, 2 and 3)
do not explicitly specify algebrawithin the categories which
congtitute the range specifications. However, within the
Advanced level unit there are some discernible algebraic
ideas specified within ‘Number’. For example:

e descriptive interpretation of pattern and
relationships using words at lower levels and
symbols at level 3 ( e.g. yield per acre = harvested
crop divided by seed expressed asy = H/S);

e construction and interpretation of linear graphs;

e use of simple formulasto calculate numerical values
including the ability to find the value of terms other
than the subject of a formula and hence have some
awareness of structure of expressions.

We have two major concerns here. Thefirst isthat we do not
consider that this type of ‘hidden’ algebra is adequate. This
omission of algebra when number, shape, space and
measures, and handling data are named and included is not
dissimilar to the lack of emphasis on agebra within pre-16
courses and a reluctance to use the name algebra in many
new A-level mathematics textbooks. Our second concern is
that the current mechanism for assessment of the core skill,
mathematics, through work in other mandatory units is
inadequate. GNV Q guidelines emphasize that:

Evidence should show that the student is confident
in the use of each technique listed

the skills should be learned and demonstrated
through activities which will enhance students
capacity to perform effectively in vocational settings.

Many students accepted on GNVQ advanced courses have
weak mathematics backgrounds. It is almost impossible for
them to learn (and for teachers to teach) the necessary
mathematics when it is embedded in complex vocational
settings.

Within the Foundation and Intermediate level ‘ Application
of Number’ units there is no discernible mathematical-
algebraic content. This does not bode well for progression to
advanced GNVQs, particularly in the more technological

3 Results from an ongoing research project suggest that it is very unlikely that GNVQ Science students will learn crucial aspects of
mathematics for science when it is delivered entirely within the vocational science context (Molyneux & Sutherland, 1996).

¥ n arecent project (Molyneux & Sutherland, 1996) only 11 out of 23 Advanced GNV Q science students had obtained higher than agrade

C in GCSE mathematics before entering the course.
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areas. It is aso reasonable to assume that those seeking
employment, having gained an intermediate GNVQ, might
need to switch careers several times during their lifetime.

The lack of a mathematical-algebraic base to their GNVQ
study is likely to limit progression to more skilled, and
technologically creative work, restricting opportunities to
use of existing technology within their field, rather than
being sufficiently mathematically literate to engage in
modification and supplementation of material.

In conclusion we recommend that algebra becomes a more
explicit part of GNVQ courses. In particular we suggest that:

e Consideration be given to the extent to which it is
feasible for all algebraic work to be learned within
the context of vocational employment.®

e Explicit mention is made of the use of technology in
connection with algebra.

Within Engineering and Science Advanced GNV Qs there is
some algebra embedded into the mandatory units for these
courses. This is not the case within what could be called
‘Non-mathematical’ GNVQs (e.g. ‘Hospitality and
Catering’, ‘Health and Social Care’). However, some
GNVQs could be interpreted as being more mathematical
than they currently are (e.g. Information Technology,
Manufacturing, Management Studies, Construction and the
Built Environment) with more mathematics embedded
within the mandatory units.

Advanced GNVQ Science and Engineering clearly requires
a great deal of algebra, extending well beyond that in
‘Application of Number’. It seems unlikely that many
students beginning Advanced GNVQ courses will have the
algebrarequired, as many will have a modest grade from an
intermediate GCSE course. The MEI Foundation for
Advanced Mathematics is a possible way forward here.

In GNVQ Science, there is no mandatory mathematics unit.
This appears to be an anomaly. An analysis of some of the
most elementary mathematical competencies required in the
Science course has been carried out by the MAP project.
Algebrais the key to most of these (see Appendix 4.2).

The mandatory unit of mathematics in GNVQ Engineering
isamajor leap forward from GCSE, taking the student as far
as the beginning of calculus. However, mastery of
differential calculus requires students, inter alia, to have
some confidence and fluency with indices and literal
algebra. The majority of Advanced GNVQ Engineering
students are likely to have studied for the Intermediate Tier
of GCSE mathematics and so will start the course with
minimal experience of algebra. There is evidence that this

unit has caused difficulties so far and these are not likely to
be alleviated unless our recommendations for pre-16
algebra (Section 2) are implemented.

We recommend that:

e Science GNVQ adopt as mandatory, an appropriate
mathematics unit which includes significant algebra
and function material (as for example, outlined in
content Block A of Lord et a. (1995))

e Intermediate GNVQs are reviewed in order to
examine the extent to which the marginalization of
mathematics-algebra limits future progression both
within GNVQ and within employment

4.4 Access to higher education: the algebraic
content of advanced GNVQ courses

There is no reason in principle why the needs of higher
education should be considered when evaluating the
mathematical-algebraic content of advanced GNVQs.
However, in practice, universities are recruiting, or planning
to recruit, students from GNVQ into a wide variety of
courses. Moreover, students aspiring to enter higher
education are being encouraged to see GNVQ as a possible
route.

The minimum requirements of a number of courses were
identified in Lord et al. (1995) and it is clear that algebra
was arelevant element for many (see Appendix 4.2). In this
report the comments of many admissions tutors emphasized
confidence, feel for number and algebra, fluency and logical
thinking. Such comments echo similar comments in
‘Mathematics Matters in Engineering’ (1995).

The significant lack of mathematics in general, and algebra
in particular, within the bulk of Advanced GNVQ coursesis
likely to present considerable problems for students wishing
to use this route as progression to higher education.
Currently, students from a wide range of courses at higher
education level follow a mathematics and/or quantitative
methods course in their first year of higher education.
‘Application of Number’ is a totally inadequate preparation
for such courses.

We recommend that:

QCA monitor the take up of HE places by GNVQ
students and in particular the adequacy of the
mathematics-algebra preparation of such students,
with a view to recommending additional units
within GNVQ Advanced level for a wider range of
vocational areas.

% Changes (to the form of the GNVQ curriculum description) are currently being recommended.
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4.5 Curriculum description: the development of
algebraic thinking

An academic course is typically described in terms of a
syllabus and assessment scheme or through expected
learning outcomes and assessment scheme. In some cases a
collection of curriculum tasks and materials may be
included. The curriculum description within GNVQ extends
this notion in great detail, identifying performance criteria,
range within which the performance criteria are to be
applied and a description of evidence indicators.”®

Specifying and defining mathematical learning through
competence statements has yet to be seen to be successful in
encouraging the nature and approach to the learning of
mathematics which isdesirable. It can lead to afragmentation
which is at odds with the nature of mathematical knowledge
which, as we have discussed throughout the report, is a
complex web of interrelated idess.

The externa assessment of GNVQ has so far comprised
multiple choice tests of the sort typical of 16+ courses of the
1970s. Theinternal assessments, when made, tend to checklist
discreteitems of mathematical knowledge and technique. This
cannot be considered as serious evidence of mathematical
achievement and competence. Mathematics and particularly
agebra cannot be divided into fragmented facts.

The disadvantage of both this approach and the more
‘traditional’ form of curriculum description through a
syllabus is that neither emphasizes explicitly the very
aspects of algebraic activity which need to be encouraged.

Some recent advocates have argued that curriculum
descriptions need to be supplemented with a description of
the classroom processes which the teacher/lecturer will
effect or encourage, and which should support the desired
learning. This might be seen as equivalent to the existence of
AT1within the National Curriculum. However, thereisareal
danger here of emphasizing process in quite inappropriate
ways, as has become the case with mathematical problem
solving and investigations as discussed in Section 2.

An alternative approach needs to be found which makes
sense to teachers and provokes teaching which makes it
likely that students will learn mathematics which has some
coherence and which becomes a valuable tool within the
vocational context of mathematics. The principle here is to
find a way of organizing the mathematics curriculum for
vocational courses which relates to: what students need to
learn, what they know when they enter such courses and the
interrelated aspects of mathematics itself; teaching
approaches which are effective (see Williams et al. (1996)
for one such approach).

If the difficulties identified in the body of existing research
onthelearning of algebra (see Section 1.4) areto betackled,
the curriculum descriptions must be explicit about the key
ideas and skills which students must tackle. These will
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necessarily include statements about structure of arithmetic
and hence algebra; statements about abstract representation,
the precision and at the same time deliberate ambiguity of
notation and symbols, in particular the changing use of the
‘=" dgn from ‘makes to ‘equals as one moves from
elementary arithmetic to more formalized arithmetic and
algebra; the notion of multiple representations of the same
idea; the key ideas of eguivalence, inverse operation,
variable and function; and the whole process of analytic
thinking. At the same time they need to emphasize the ‘feel
for’ and ‘confidence with' aspects of learning algebra,
suggesting that there needs to be much more explicit
reference to the ability to talk about, discuss, argue and
defend the particular uses made of algebra within vocational
contexts.

Although the notion of competence and mastery may be
useful for some aspects of algebra—for mastering specific
skills and techniques—it is inadequate for such ideas as
classification, comprehension of structure, condensation of
ideas, representation and imagery.

Evidence from small scale studies (e.g. Johnson & Elliott,
1995) suggests that the emphasis on technical competence
within a vocational context leads to low levels of self-
confidence in algebra among students who have followed
vocational courses in the 16-19 range compared with those
who have followed an A-level route. This evidence also
pointsto the preval ence among such students of an approach
to algebra which Tall (1996) would call procedural.

4.6 Approaches to teaching: separate or embedded
provision

The preceding sections indicate our concerns that the
current model of GNVQ curriculum description is unhel pful
in promoting adequate algebraic learning within vocational
contexts.

Logicaly, this leads to the need to consider the form of
curriculum provision in algebra, which for the most part is
currently embedded within other vocationally oriented
units. This may allow an emphasis on the adaptation and
application of algebraic skills in context (setting up
equations, considering the suitability of a proportionality
model and interpretation of a solution). It does not allow a
focus on the structure and sense of the algebra itself; these
are intra-mathematical considerations which are the essence
of algebraic development and which are currently inhibited
by the demand for permeation through a vocational context.
It should be recalled at this point that apart from those students
following GNVQ engineering (who must complete a
mathematics unit), the main mathemeatical-algebraic provision
for all other GNVQ students lies in the core skill unit
‘Application of Number’, where evidence of performance is
usually collected through vocationa units. Some GNVQs
incorporate additional mathematical-algebraic competencies
within the performance criteria, but no separate units exist.
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(We have dready discussed the particular problems this
creates within science.)

Anecdotal evidence suggests that at Foundation level,
‘Application of Number’ tends to be delivered separately
within basic numeracy units as many students have major
problems with basic skills. Such courses are usually taught
by numeracy staff within colleges, which itself creates
sequencing and permeation difficulties.

At Intermediate level, there is often separate teaching for
about one hour a week concentrating on arithmetic and data
collection, again delivered by numeracy staff within colleges.

At Advanced leve there is usually no separate teaching for the
core skill application of number. Students learn their algebra
through other units and have access to drop-in workshops
within colleges, which utilize a mixture of paper-based and I T-
based materials. The extent to which agebra at this level is
developed appears to vary consderably, dependent in part on
the time alocated to GNVQ and the particular assessment
burdens upon individua saff and students. Evidence is
accumulating (Molyneux & Sutherland, 1996) that this
approach to teaching the Advanced leve core skill makes it
very unlikely that students will learn any dgebra at al.

In contrast with schools, further education isnot an al-graduate
profession. It would appear that a considerable number of staff
with low or in some cases no qualification in mathematics are
being required to teach mathematics within the context of their
own subject area. This could generate problems as these staff
lack confidence in their own mathematical skills, and an
understanding of algebrain particular, and thus appear hesitant
to encourage students or to provide advice and support.
Students experiencing difficulties are often referred to drop-in
workshops which they may or may not attend.

On the other hand, if the vocational teacher does not have any
involvement in the core unit then it can be ignored by them as
it may be assumed to be delivered in basic mathematics units.

The permeation of ‘Application of Number’ across severd
other units presents its own problems of fragmentation. The
coherence of the agebraic experience of students would
appear to be amost impossible to plan, let alone achieve.
There must be a case therefore for key ideas and skills to be
developed through some specialist provision running
aongside other units. This would help achieve coherent
planning of the delivery of * Application of Number’ through
those other units.

The assessment of ‘ Application of Number’ is intended to be
integrated within the assessment of the other units studied.
There is some evidence to suggest that in some cases
assessment of this core skill is in fact achieved using
contextualized assignments set and marked by an
‘Application of Number’ specialist. Such staff are only in a
position to identify evidence of achievement, and have no
responsibility for delivery. It is the students' responsibility to



collect evidence of achievement, but again, there is evidence
that many do not understand what is expected of them, so
seek advice from the vocational unit staff, who feel unable to
help and so pass them on. The separation of delivery and
assessment created by the insecurity of staff themselves
within the mathematical field, thus leads to poor practice and
little gain in understanding or skill on the part of students.

The complexity of delivery of Application of Number’ thus
raises questions about the extent to which students are able
to develop their own algebraic thinking through their course
of study, and the extent to which the very fragmented nature
of its delivery makes this impossible anyway.

More positively, within GNVQ, algebra is intended to be
presented within a context, with all its potential implications
of relevance, motivation, sense-making and rationale.
However, we suggest that changes over the last ten years
within academic education have not made algebra more
accessible to the majority, but have more or less removed it
from the curriculum.

We recommend that :

e The teaching of the core skill unit ‘Application of
Number’ be coordinated by a suitably qualified
mathematics expert and delivered through a mixture
of separate and embedded provision which enables
both the appropriate contextualized application of
algebraic competencies and the coherent
devel opment of algebraic thinking.

e QCA commission research into the extent to which;

‘ Application of Number’ is being delivered currently
by inappropriately qualified staff;

GNVQ students are disadvantaged by the lack of
confidence and ability of staff themselves to embed
algebraic thinking and skills appropriately within
vocational units and/or the implicit removal of the
need for such staff to address such competence by the
provision of entirely separate numeracy provision.

e QCA consider, in expanding the notion of core skills
to all students in the 1619 age range, whether or
not it is appropriate for all students to achieve the
same level of knowledge and understanding of
‘Application of Number’. Is the same core unit
appropriate for all ?
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4.7 I nternational comparisons

It has not been possible within the context of this report for
us to make comparisons between the algebra components of
vocational courses in France, Germany and England.
However, we refer here to the work of Wolf (1996), who has
pointed out that currently the approach to teaching and
learning mathematics to vocational students in England and
Wales is very different from other European countries such
as France and Germany, where vocational courses contain
mathematics units with avocational emphasis, but which are
taught separately. She states that ‘Overall, therefore,
mathematics teaching in English vocational coursesis quite
asunique asit isfor academic ones, indeed perhaps more so,
sinceintheformer it issimply missing, whilein the latter we
find features and delivery patterns totaly different from
those used anywhere else. Particularly striking is the
combination of a completely “common” list of skills, the
same across al vocationa areas, with an emphasis on
completely integrated delivery. Also unusua is the absence
of any guidance on time to be spent on teaching and learning
mathematics, the uncoupling (in theory) of core skill and
award levels, and the degree to which the design of teaching
and assessment materials are delegated to the individual
teacher or course team’. She also points out that * The lack of
ambition manifested in English vocational course design
contrasts dramatically with the situation in Europe or the
Pacific Rim, where objectives are set high with an express
view of increasing national performance levels and ensuring
that students are challenged and guaranteed the possibility of
progression’ (Wolf, 1996).

We recommend that:

e QCA consider further the evidence from
international competitors as to the mathematical-
algebraic demands made through vocational
courses. (See for example Wolf & Rapiau, 1993;
Wolf, 1992; Wedege, 1995)

4.8 Summary

For students to be successful with algebra at this level of
education within the vocational field, there is a need for
teachers to enable students to address past failure and to
engage in wider conceptions of arithmetic and algebra than
they may have to date.

The priority in teaching should therefore be to help students
make sense of algebra (and pre-algebra) structurally,
establishing connections with number, with geometry and
graphs and between algebraic concepts such as equation,
function and transformation. When a student has confidence in
and asense of the notion of procedures, then it will be profitable
to practise specific techniques and become fluent with them.

Potential advantages of the approach to GNVQ ddivery arethe
emphasi s upon independent learning, resource-based study and
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responsibility to provide evidence. There is a sense in which
this ought to promote ownership by students and encourage
deep approaches to learning (see for example Gibbs, 1992).
However, the ability of students to embrace such approaches
is limited by their perception of what congtitutes algebra.
Current curriculum descriptors and organization mitigate
against a holistic conception, encouraging instead a
piecemeal conception, focused around mastery of individual
techniques. In addition vocational students need considerable
teacher support to identify what they do and do not know
about algebra before they can embark on independent
learning. A denial of the role of the teacher again relatesto a
lack of understanding of the complexities of learning
mathematics.

The group is somewhat sceptical of the ability of open access
workshops and current computer-based learning material on
their own, to alter students’ prevailing conceptions of learning
algebra. Furthermore, there is some evidence that those
students most in need do not necessarily attend open learning
workshops. What they seek is individua persona help, not
materials to work with. Open access workshops may support
superficial attempts to resolve difficulties by encouraging
studentsto seek hel p with solutions to specific questions rather
than encouraging them to sort out their difficulties on awider
front.

We recommend that research is conducted on :

e Whether the predominant models of teaching basic
numeracy (for example workshops, mathematics
specific units) are effective.

e The nature and extent of the use of technology and
how this relates to learning.

5. Conclusions

This chapter starts with abrief account of the main ideas and
their consequences in the form of some rather genera
proposals. Then the remaining sections, 5.4-5.11, outline in
more detail the implications of these proposals.

5.1 Nature of school algebra

In our report we have identified three important components
of school algebra namely:

e Generational activities—discovering algebraic
expressions and equations;

e Transformational rule-based activities—manipulating
and simplifying algebraic expressions, solving
equations, studying equivalence and form;

e Global, meta-level activities—ideas of proof,
mathematical structure, problem-solving. (This final
component is not exclusive to algebra.)
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We have also used the idea of ‘symbol sense’, whereby
algebraic symbols are used not merely as forma and
meaningless entities with which to juggle, but as powerful
ways to solve and understand problems and to communicate
about them.

Our overall conclusion isthat, in England and Wales, an
over-emphasis has been placed on generational activities
and that the other aspects of algebra have received too
little attention. Consequently symbol sense is not being
properly established.

5.2 Algebra as a language

The algebraic language is required in order to develop
awareness of mathematical objects and relationships,
many of which are virtually impossible to manage
otherwise. The rules and grammar of this language are
needed in handling the transformational activities
mentioned above. Without appropriate emphasis on the
symbolic language such essential ideas as algebraic
equivalence cannot be learned.

It has to be accepted that pupils will make mistakes with the
algebraic language and that this is an inevitable part of
learning a rule-bound system. Conseguently pupils need
extensive use and feedback on these mistakes before they
reach post-16 and higher education.

Users of alanguage need to know when to use which aspect
of alanguage within which problem situation. This hasto be
communicated by humans. Computer-aided instruction
cannot teach students the subtleties of when to use a
language.

5.3 Changing emphasisin school algebra

What consgtitutes school algebra in England and Wales has
changed over the last 10 to 15 years and particularly with
respect to schooling pre-16 which is what we discuss first.
Influenced by the Cockcroft Report, a particular approach to
school algebra has been taken which is characterized by: an
emphasis on problem-solving related to real-world
problems; an emphasis on relating algebra to pupils
informal methods; a de-emphasis on the role of symbols.
Some undoubtedly good ideas have become institution-
alized in our school curriculum in quite unintended and
unpredicted ways. For example, activities such as
generating expressions from patterns have been prioritized.
Algebra is predominantly an activity which is interna to
mathematics and which cannot be contorted into instant
relevance; so it is not surprising that increased emphasis on
realistic problem-solving has resulted in decreased
emphasis on algebra. Furthermore, much of what is
currently called school algebrais not algebra at all. Pattern-
spotting as an isolated activity, and trial and improvement
for solving a quadratic equation, are not algebraic activities,
despite the current National Curriculum implying that they



are. The mere use of algebraic symbols does not imply
algebraic activity. (Thisis probably the biggest confusion of
all, and perhaps explains why solving equations using ‘trial
and improvement’ is currently considered to be algebra.)
The reason we stress thisisthat if what isnot algebra is
called algebra then the whole community is seduced into
believing that algebra is being taught.

A multitude of factors, which include new forms of
assessment, the introduction of the computer and an emphasis
on making mathematics more relevant, have worked together
to nudge out the transformationa rule-based and global meta-
level aspects of algebra from the school curriculum.

Algebra is not even explicitly mentioned in the GNVQ
Application of Number Core Units (Levels 1, 2 and 3). The
omission of algebra when number, shape, space and measure,
and handling data are specified seems to be a manifestation of
the desire to suppress algebra within the curriculum.

The National Curriculum iscurrently too unspecific and
lacking in substance in relation to algebra. The algebra
component needs to be expanded and elucidated—
indeed rethought. Similar changes are required at other
levelsand in other units.

Note: For most of the committee it was unproblematic to
draw attention to the fact that ‘trial and improvement’
methods of solving eguations are not algebraic methods.
This does not imply that ‘trial and improvement’ methods
are not valuable; in fact, a whole branch of mathematics
(numerical methods) centres around this idea. However, the
issue has become very contentious, asif this attacks the very
crux of what is considered to be important in school
mathematics in England and Wales.

It is a widely-held view that trial and improvement is
somehow natural and spontaneous. However, we believe
that this method has become taught and examined to such
an extent that for many pupils it is the ‘official school
method'. For example, ‘trial and improvement’ is often
explicitly specified in GCSE examinations (asisthe casein
the example shown on page 8 of this report) and students
will probably not receive any marks if they do not use this
method. The converse does not appear to be the case, as
most GCSE examination questions do not specifically ask
pupils to solve a quadratic equation by an algebraic
method.

Werecommend that a study is carried out to examine:

(i) the extent to which pre-19 pupils make use of trial
and improvement;

(i) whether this provides a good introduction to
algebraic methods or whether it makes it more
difficult to learn algebra.
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5.4 Implications for national curricula

There are many pressures which have worked together
towards reducing mathematics in general, and agebra in
particular, to senseless fragments. Such pressures associated
with the National Curriculum include the introduction of Key
Stages, levels of attainment and new forms of assessment. In
addition, there is enormous pressure for schools to perform
well in the league tables and national examinations, and so
teachers are likely to teach ‘just in time' for the test and not
before. For example, the item ‘Pupils justify their
generalizations or solutions, showing some insight into the
mathematical structure of the situation being investigated’ is
not specified until level 7 in the National Curriculum and so it
is not likely to be taught until pupils are deemed to have
reached thislevel. Thisleads not only to lack of challenge but
aso to quite inappropriate ‘ separating off’ of a central aspect
of agebra. In the case of the new vocational courses, the very
nature of assessment by competence criteria fragments all
mathematics, and in particular algebra.

Conceptions developed by students, which may have been
functional in previous situations, can become obstacles to
further learning. This idea that previous conceptions can
become barriers to future learning was probably implicitly
known by ‘good’ mathematics teachers. The current
National Curriculum with itslevels of attainment islikely to
work against this type of teacher-knowledge, especially as
an idea tested at a previous stage is then supposed to be
understood for al time. In other words, the National
Curriculum presents teachers with an inappropriate model
for thinking about teaching and learning. In the case of
algebra, this can result in teachers and pupils losing sight of
its central role in mathematical activity and hence can work
against the teaching and learning of algebra.

We recommend a reworking of algebra within the
mathematics National Curriculum and a critical
appraisal of the notion of levels on which this National
Curriculum is predicated.

We recommend that the structuring of the National
Curriculum should take into account both the need to
preserve mathematical coherence and a consider ation of
how pupils learn algebra. We urge that the
interrelationship between levels of attainment and Key
Stage tests be re-examined.

We suggest that more research is needed to under stand
the relationship between what algebra is taught and
what is learned. We recommend that in the A-level
Common Core, content should not be separated from
modes of algebraic activity.

We also recommend that there should be a coherent and

clear curriculum for the mathematical element in
vocational cour ses.
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5.5 Implications for the timing of algebra teaching

We have identified a range of activities which we consider
to be precursors to algebra. These include such activities as
working with relationships, expressing relationships
involving more than one operation and working with
inverse arithmetic operations. These should take place both
in the primary and early secondary school.

Algebra for citizenship is a crucial idea, as well as algebra
for those who intend to follow more specialized courses in
higher education. As discussed in Chapter 4, this should
involve a feel for number structure and the pre-algebraic
ideas of expressing and working with relationships, and
focusing on language as a means of expressing
relationships. It also involves the use of appropriate
symbolism within specific contexts, including information
technology. Thereis a strong case for introducing algebra to
al pupils, as in many other countries such as France and
Germany. We recommend that algebra is introduced
from the beginning of secondary school with more
emphasis being placed on all aspects of algebra.

Nowadays many students have to devote much valuable
time to the development of algebraic ideas at the start of any
A-level mathematics course, and time throughout that
course has to be found for students to continuously work on
these algebraic activities. We recommend that post-16
institutions develop bridging algebra courses for some
students before they start A-level.

Students following vocational courses are also often
handicapped by a lack of experience of algebra and thisis
particularly the case in GNVQ science and engineering. We
recommend that QCA monitor the take up of higher
education places by GNVQ students and in particular
the mathematics-algebra preparation of such students,
with a view to recommending additional units within
GNVQ advanced level for a wider range of vocational
areas.

5.6 Implications for teaching algebra
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To be effective a teacher has to become aware of pupils
individual approaches but also has to orchestrate learning so
that pupils develop knowledge of mathematics which is
recognized by communities outside school. In the case of
algebra this involves the teacher more or less imposing an
algebraic language which pupils will not previously have
encountered.

Algebraic problems within schools will always have to be
contrived when relating to the ‘real’ world. Algebra word
problems were traditionally used for this purpose. In
England and Wales these types of problem have mostly been
rejected as being too contrived, although Bell (1995) has
shown how they can be used in a creative way in the
classroom. The current trend is to introduce algebra within
supposedly realistic contexts which centre around patterns
of objects (for example chairs and tables, tiles around a
pond, matchsticks) and which are no more realistic than the
algebraword problems which were used in the past. Within
these types of problems, the introduction of the algebraic
modes of thinking and analysing tends to be delayed and is
not viewed as central to the problem-solving process.
Problem-solving related to ‘realistic’ situations and
mathematical modelling often depends on algebra but does
not necessarily make a good vehicle for teaching algebra.
Problem situations have to be devised in which it makes
sense to introduce algebraic concepts and in which teachers
are not fearful to talk about something which pupils cannot
yet know about.

Algebra has to be taught and the teacher will always play a
crucial rolein this respect. In order to do this, teachers have
to understand what school algebra is. If teachers take a
routine approach to what is currently specified as algebra
within GCSE examinations, Key Stage tests, curriculum
materials and the National Curriculum, then it is not likely
that algebrawill be taught. Thisisthe reason why teachers
cannot be blamed for the current situation. Thisis also
the reason why we are calling for changes in the curriculum
and its assessment. Algebra is perhaps the central part of
mathematics, and it should be taught as such. (We are not
arguing for separate algebra courses as has been the case in
the USA, for example; but we are arguing for algebra to be
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Appendix 1.1 A-level Points: 10th/90th Percentile
For 1994 Entrants Studying
Mathematics (G100)/Physics (F300)*

Maths Physics

Bangor 8/24 -
Bath 16/30 10/24
Birmingham 20/30 14/30
Bradford 6/20 -
Bristol 18/30 14/30
Cambridge - -
Cardiff 8/22 12/30
UC Lancs 6/14 -
City 10/20 -

de Mont. 6/18 -
Durham 20/30 16/30
Edinburgh 22/30 18/30
Essex 10/23 14/20
Glasgow 18/22 -
Heriot-Watt 18/30 -
Hull 8/24 -
Imperial 18/30 16/30
Kent 14/16 12/24
Kings College 14/28 14/30
Lancaster 22/28 6/18
Leeds 14/30 18/26
Leicester 10/26 14/20
Liverpool 10/30 8/24
Loughborough 14/26 16/24
Manchester 16/28 16/30
UMIST 14/26 20/30
Newcastle 16/28 12/30
Nottingham 20/30 20/30
Oxford 24/30 28/30
Reading 18/23 10/30
RH, U of London 16/28 10/16
Sheffield 16/28 14/30
Sheffield Hallam 8/14 4/13
Southampton 10/28 10/24
St. Andrews 26/30 18/20
Surrey 14/24 10/24
Sussex - -
Swansea 12/24 10/24
UCL 16/30 20/26
Warwick 20/30 16/28
York 14/28 14/30

NOTE 1: Figures based on students accepted pre-clearing and A-levels taken in the year of
entry and the year prior to entry to HE. However, they also include mature students who
may have taken only 1 A-level.

NOTE 2: Missing figures may mean no course, or no figure available to UCAS.
* Source UCAS 1996 Official Guide.
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Appendix 1.2

GERMANY - Overview of School System

Schools in Germany are organised by the Lander. Although
there are differences in the detail, for example the school-
leaving exams can be set either by the Land or by individual
schools, they al follow more or less the same pattern.
Children start formal school at the beginning of the
academic year in which they are seven. After four yearsin
the Grundschul e students attend one of three types of school
(the decision about which school to attend is made either on
the basis of an 11-plus style examination or by the
Grundschule depending on the Land):

Hauptschule 5 further years with 4 hours a week of
mathematics.  The  school-leaving
qualification is the Hauptschulabschluss.
Realschule 6 further years with 4 hours a week
mathematics.  The  school-leaving
qualification is the Real schulabschluss.
Gymnasium 9 further years with 4 hours a week
mathematics during the first 7 years. For
the final two years at the Gymnasium,
students must decide to take either the:

Mathematik-Grundkurs (basic course)
with 3 hours a week mathematics, or the

Mathematik-Leistungskurs  (advanced
course) with 5 hours aweek mathematics.

It isnot possible to drop mathematics. Between 25% and 30%
of Abitur students take the (more advanced) Leistungskurs.
Students usually take 6 Grundkurse and 2 Leistungskurse.

The school-leaving qualification is called the Abitur. This is
graded on the bass of assessed work in dl the subjects
throughout the final two years a school and on the basis of
final written and oral examinations. The final written
examinations are for the two Leistungskurse and one of the
Grundkurse. Students are examined orally in one further
Grundkurs.

The national figures show that around 31% of children
attend the Gymnasium, 26% the Realschule and 26% the
Hauptschule. (There are some comprehensive schools in
some Lénder. These take only avery small proportion (9%)
nationally of any age-group.* There are also some
combined Haupt- and Realschulen which take around 7.5%
of children) Figures for Baden-Wirttemberg suggest that

School algebra in Germany and France

around 27% of any age-group obtain the Abitur.

It is possible (and not uncommon) for students to drop down
from the Gymnasium to the Realschule if they have trouble
coping. It isaso normal for studentsto haveto repeat ayesr if
they fail ayear’swork. This meansthat, although the ‘ normal’
age for leaving the Realschule and Gymnasium is 16/17 and
19/20 respectively, students can be significantly older.

FRANCE - Overview of school system*

Schools in France are organised on the basis of national
programmes under the responsibility of the Minister of
National Education. In France pupils start school at the
beginning of the school year in which they are six. After five
years in the Ecole Primaire al pupils enter the Collége
(which is a comprehensive system). The Ecole Primaire and
College constitute compulsory schooling. After College
students study at the Lycée. The following is a breakdown
of the mathematics studied at the Collége and the Lycée.

College 4 years

During the first two years of collége all pupils study the
same mathematics (with no streaming or setting). Each
pupil has between 3—4 hours of mathematics a week
(the choice is made by each college).

During the last two years of collége there are two
possible courses:

e ageneral route
e atechnological route

The examination at the end of Collége is le Brevet des
Colleges. The subjects are planned at the level of the
Academy (Academies are organised regionally). This
examination has no influence on the passage to higher
levels of study.

Lycée 3years
At the Lycée there are three possible courses:

e ageneral route
e atechnological route
e avocational route

General and technological route. Thefirst year of these
two routes is common i.e la classe de second, with 3
and a half hours of mathematics plus about one hour of
‘group work’ (modules).

Students are prepared for the Baccalauresat in the last two

% Structures of the Educational and Initial Training Systems in the EU European Commission, Official Publication of DGXXII, 1995.
7 \We are indebted to Martine Desigaux, Colleége Jules Flandrin, Corenc, Isére, France for providing this information.
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years, premiéere and terminale.

The last two years of the General Baccalaureat prepare for
the Baccalaureat in three courses, the options being different
in each:

Bac L—literaire, with no more compulsory
mathematics but the possibility of taking an optional
mathematics course (4 hours);

Bac ES—economique et social, with a compulsory
mathematics course applied to economics and social
sciences ( 3 hoursin premiére and 4 hoursin terminale),
with a possibility of two optional supplementary hours
in the premiére and the terminale class.

Bac S—scientifique, with compulsory mathematics: 5
hours in premiére, 6 hours in terminale. In addition, in
premiére a supplementary hour in groups and in
terminale an optional two hoursin groups.

The last two years of the Technological Baccalaureat
consists of 8 principal possible orientations with differing
hours of mathematics (in the following hours for premiére
are followed by hours for terminale).

Science et technologie indudtridlle (3 plus 1 hour of
‘group’ module, then 4 hours); Science et technologie de
laboratoire (3 or 4 plus 1 hour of module, then 2 or 4
hours); Sciences medico-sociales (3 plus2 hours); Science
et technologie tertiare (2-3 hours, with the possibility of 1
hour more in a module, the same in premiére and
terminale); Science et technologie du produit agro-
alimentaire (at least 3 plus 3 hours); Hotellerie (2 plus 2
hours); Arts appliqués (3 plus 3 hours); Techniques de la
musique et de la danse (4 plus 3 hours).

The vocational route has many possible strands.

In order to obtain a Brevet d Etudes Professionnelle
(BEP) in 2 years there are two options: either industrial
route with 4 hours of mathematics and physics together
in the 1st and 2nd year, or tertiary route with 3 plus 2
hours of applied mathematics. After the BEP students
can eventuadly regjoin the Bac professionnel which
corresponds to a specific cycle (not to be confused with
the voie technologique). One in two students follow
this direction after the BEP.

Pupils can repeat ayear of schooling in France, average rate
of repeating: Terminale—17%; Premiére—8%; Seconde—
17%; Troisieme—10%; Quatrieme—7.3%; Cinquiéme—
11.2%; Sixiéme—10.1%

School Algebra in France and Germany

Primary School. Analysis of the 1995 test used with pupils
in the last class of the Ecole Primaire suggests that pupils
are not given so much intermediate support to answer
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‘arithmetic type' questions as is the case with Key Stage 2.
The French test places more emphasis on choice of
operations than process of computation. No similar
comparison can be made with the German system as pupils
are not tested at this stage in Germany.

Lower Secondary School. The Brevet examination is passed
by approximately 75% of an age cohort in France.
Calculators are alowed in the examination. However the
process of using a calculator is explicitly examined in
GCSE, which is not the case in the Brevet. Despite the fact
that calculators are allowed in the Brevet examination,
pupils are sometimes explicitly asked to present their
answersin aparticular form which could not be produced by
acalculator (e.g. leave in square root form). In this sense the
Brevet questions place more emphasis on structure and form
than GCSE questions. Brevet examination questions are
rarely situated in practical contexts. Diagrams are presented
asanalytical tools. Thereisno ‘pictorial’ decoration. Brevet
questions examine a much narrower range of mathematical
ideas than the GCSE examination.

Algebra questions in the Brevet involve very explicit
manipulation of symbols. Brevet questions do not explicitly
test ‘trial and improvement’ methods. The agebra and
arithmetic Programme specified for al pupils in the Classe
de Troisiéme is shown below. This shows the considerable
emphasis which is placed on structure in arithmetic together
with algebraic equivalences.

2. TRAVAUX NUMERIQUES

La résolution de problemes (issus de 1a géométrie. de la gestion de données. des
autres disciplines, de la vie courante) cansutue I'objectsf fondamentai de cette parue
du programme

La pratique du caleul exact et approché doit conduire, 3 lissue de la classe de
Troisieme, 2 une bonne maitrise des régles opérataires et des régles de comparaison
des nombres.

L'emirainement au calcul litéral se poursuit et doir aboutr 3 une relative autonomie.

1. Ecritures littérales: factorisation
d'expressions de ia forme:

el - al+2ab+ B, at—2ab+ B

Comme en Quatrieme, les travaux
s‘articuleront suivant deux axes:

Utifisation d'expressions littéraies pour
des caiculs numeériques:

Utilisation du caiewd littéral dans la
mise en équation et la résoiution de
problémes divers.

Les activités viseront a assurer la mai-
trise du développ. nt d'expressi
simpies: par contre. la maitnse de la
factonsauon n'est pas un objectif de la
classe de Troisiéme. On entreuendra les
compétences en mauére de calcud sur
les pumssancer

2. Calculs élémentaires sur les ragi-
caux (rac:nes carrees):

Proguit et quotient da deux radicaux.
Puissance c'ordre 2 ou 4 d'un racical.

La touche E de {a calculatrice, qui a
déja éié utdisée en Quatnéme. fournit
unc valeur approchée d'une racine car.
rea. On met en place. par adleurs les
regies de calcul ci-contre

Le caleul sur des expressions compor-
tant des radicaux (lelles gque

1
3+ 22 ——=—— ) n'est
vz v ) n'est pas un

objectif du programme. Comme dans les
classes antéricures, on habituera les
éléves 3 écrire un nombre sous la forme
{a mieux adaptée au probléme posé.

Savoir factoriser des expressions, teiles
que:
FFNE+H—=5(x+D
Qz+D+2z+D(x+)
Connaitre les égalités
(a+ b)fa~ b)=at — p?
@+ bf=al+2ab+ &
fa=bf=a'=~2ab+ &
et savoir les yiiser sur des expressions
numeniques ou littérales simpies. telles
que:
1013 = (100 + 1) = 1007 + 200 + [
(e+5 —d=z+P -2
=E+3+D(x+5=2)

Savair que, si a désigne un nombre
positif, V/a &t le nambre positif dont le
CuTE €51 &

Savair déterminer, sur des exemples
numeriques, les nombres z tels que
= = a ou a désigne un nombre positif.

Sur des exempies aumeériques, utiiser
les égalités:

Vay=a@=a
- [
Vao'= a5 =

et b désignent deux nombres positifs.
Par exemple: V35 = 3 /5,
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There have been a number of studies of the three German
school-leaving examinations with their English counterparts
(Chandler, 1996,** Steedman, 1997*)

Hauptschule/Realschule.

The Hauptschulabschlussis designed for the least academically-
minded students and is the school-leaving qualification (taken
at 15/16) of about 30% of the population. The comparable
qudification would therefore be GCSE Basic Tier. In Bavaria,
only 5% of school-leavers fail to obtain the competence
required of them, whereas 15% of 16-year-olds in England
and Wales fail to gain a GCSE certificate in mathematics

The Realschulabschluss is the school-leaving qualification
(taken at 16/17) obtained by about 35% of the population.
According to figures quoted in Steedman (1997) around
65% of all German students obtain the corresponding level
in mathematics (this includes those in the Realschulen and
those in the Gymnasiun). Around 43.5% of English and
Welsh students obtain five GCSEs at Grades A—C.»

Chandler (1996) compared questions from Bavarian
Hauptschul e examinations with those from GCSE basic tier,
and compared questions from the Realschule examinations
with GCSE higher level. She found that much lower
expectations were placed on English and Welsh students
than on their Bavarian counterparts. The main difference is
in the way questions in GCSE are broken down so that
English and Welsh students are required to show
‘considerably less ability to reason through a problem than
their counterparts in Bavaria’. She suggests that 16-year
olds in Bavaria, at the equivalent of the GCSE tier are
expected to handle complicated al gebraic expressions, many
of which are not found until A-level in the UK.

Upper Secondary School.

We have studied questions from the Abitur examinations from
the last six years, including the attached sample questions.
Although the questions probably appear very difficult to UK
based students and teachers, this may in part be due to
differences in approach. There appears to be much less
emphasis on the relevance of mathematics and much more on
geometry and the manipulation of abstract concepts. The
structure of the question is almost identical every year, so that
it is possible for students to practise extensively on questions
from previous years. In relation to algebra we list our key
conclusions below. However we would encourage anyone
interested to study the questions for themselves. (We have
appended them to this section for that purpose).

1. The Grundkurs requires comparable algebraic
manipulative skills to those required in single
mathematics A-level.

2. The Grundkurs requires much greater skill in
formulating problems agebraically than does either
single or further mathematics A-level.

3. The Grundkurs is compulsory for all students at the
Gymnasium not just those specialising in mathematics
(although not all of these students are assessed on the
basis of written examination). Teaching all students to
something like this level in the UK would obviously
require a larger number of well-qualified and able
teachers than are available today.

4. The Leistungskurs requires a comparable or even
higher level of algebraic skills to those required in
Further Mathematics A-level.

5. The Leistungskurs also requires much greater skill in
formulating problems algebraically before attempting
to solve them than does further mathematics A-level.

We have not made such an extensive comparison with the
Baccaluareat examination in France. We include an example
on complex numbers from the Bac S. This gives a sense of
the algebraic competence expected of students.

SUJET COMPLEMENTAIRE %
JUIN 1995, SERIE'S 5 points

T
On note i le complexe de module 1 et d’argument 3

Soit P(z) = z3 ~ 822 + 24z - 32, ol z est un nombre complexe.

1. a) Vérifier que P(4) =0.

b) Déterminer les nombres rézls a, b et ¢ tels que, pour tout nombre
complexe z, P(2) = (: — 4)(az?+ bz + ©).

¢) Résoudre dans I’ensemble des nombres complexes I'équation
2%~ 4z + 8 = 0 (on donnera la forme algébrique des solutons). En
déduire les solutions de 1’équadon P(z) = 0.

2. Le plan complexe est muni d'un repére orthonormal (O; 4, V)
d’unité graphique 1 cm. On note A, B, C les points d’affixes respec-
dves:2+2i;4;2 -2},

a) Placer ces trois points.

b) Montrer que OA =0C=AB =CB.

¢) Donner la forme trigonométrique de 7, =2 + 2ietde zo =2 - 2i.
d) En déduire la nature du quadrilatere OABC.

8 Chandler, ‘A comparison of Public Expectation of Achievement in Mathematics in England and Wales and Bavaria—A Personal View'.

Report to SCAA, 3/7/96.

*® Steedman H., Greer A., Bertrand O., Richter A, Robin M. & Loeber K., (1997) Assessment Qualifications and Standards: the UK
compared to France, Germany, Singapore and the US, CEP Skills Audit, DFEE

% National School League Tables, 21/11/95.
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Sample Examination Questions
Baden-Wiirttemberg 1995

tudents taking the Grundkurs would have three hours mathematics tuition a week in their final
wo years at the Gymnasiwmn. Students specialising in mathematics take the Leistungskurs which
Sypically involves 5 hours a week during the final two years.

t'he examination for both the Grund- and Leistungskurs consists of a four hour written
txamination involving two questions. There is no choice of question—the teacher selects the

uestions from a choice of three in each of the relevant areas. Students must study analysis and
The of linear algebra or probability.

€

@ NALYSIS—Grundkurs
o function f is defined for every ¢ by

A
A

fi(e) =¥ " +z - 3, rcR.

ts graph is K.

I a)

4)

Investigate K for extrema, turning points and asymptotes.
Plot K, and its asymptotes for 0 < z < 5. (Use lem = 1 unit.)
Calculate the area enclosed by K and the coordinate axes.

The tangent to Ky at P (u|fi1(u)) with 0 < u <2 cuts the y—axis at Q.

The straight lines z = —1, z = u, y = —3 and the line parallel to the x-axis through @ define
a rectangle. This rectangle has area A(u).

Calculate A(u), A(0) and A(2).

What is the maximum value of A(u)?

Calculate for general ¢ the coordinates of the minimum T; of the curve K;.
Show that all points T; are equidistant from the straight line y = —%z.

For which values of t does T} lie on one of the coordinate axes?

Consider the region which stretches to infinity to the right of the y—axis and which lies
between each curve K; and its asymptotes.

Prove that its area J; is finite for all £.

What is the relation between t; and t, if J(t1) = eJ(¢2)?

SEOMETRY AND LINEAR ALGEBRA-—Grundkurs
Consider the point @Q(1|1] — 3) and straight lines

(
(

a)

)

6 1 4 1
f:r= 2 | +r| 2 and g¢:%= 4 | +s5]1 0 ]; rseR.
-2 2 -3 1

Find the coordinates of the point of intersection S of the straight lines f and g.
Calculate the angle of intersection of the straight lines.

The plane E contains f and g.

Derive the equation of the plane E.

Calculate the distance between the point @ and E.

The straight line h passes through the point S and is perpendicular to the both f and g.
Find an equation for h.

The sphere A passes through the origin O, touches the plane I from part a) and has the
smallest possible radius.

Find an equation defining K.

The sphere A is the mirror-image of [’ taken with respect to £. Find an equation for A'™.
What are the coordinates of the point B, at which the two spheres touch?

Justily the statement, that the straight line through the centers of the spheres is parallel to
the straight line & from part a).

Calculate the distance of the straight line & from the sphere K.

The straight line p is parallel to the straight line ¢ and passes through the point Q.
A set of spheres includes all spheres which have centres on p and which touch the plane E.
Derive an equation for the spheres in the set.
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Investigate whether the sphere K from part b) is a member of the set.
The points of contact with the plane E of all the spheres in the set lie on a straight line.
Give an equation for this straight line

ANALYSIS—Leistungskurs
For every a > 0 the function f; is given by

fa(z) = %a;_)_; z > 0.

Its graph is K,.

2)

b)

d)

Investigate K, for maxima, minima and asymptotes.
Find the equation of the line C on which all maxima of K, lie.
Plot K4 and C for 0 < z < 3. (Use 2.5cm = 1 unit.)

Find the equation of the tangent to K,, which passes through the point P(u|fa(u}).
How should u be chosen so that this tangent passes through the origin O7
For which a does this tangent through the origin bisect the angle between the z- and y-axes.

The function f, has an integral of the form

D+ FElnz

Fy(z) = "

Find the coefficients D and E.
The curve K,, the z-axis and the straight line & = ¢ with ¢ > % define a surface with area
Al2).

Find Aq(t) and the image of the function ¢ — Aq(t); ¢ > 2.

a

Prove that for all £ > 0 the inequality In z < /z holds.

GEOMETRY AND LINEAR ALGEBRA—Leistungskurs
Consider a cartesian coordinate system and the points F(2{0), G(6]4), A(—2/2) and A’(6] —2). An
affine transformation « has the fixed points F and G and maps the point A onto the point A’

a)

b)

Construct the image of the straight line A : 3z; — 225 + 10 = 0 and the pre-image of the
straight line ¢’ : z; = —2. (Place the origin at the centre of the graph paper and use lem =1
unit.)

Describe the arguments you use in your construction.

Find the equation of the transformation a.

Specify the eigen values and eigen vectors as well as the fixed elements of a.

What kind of transformation is o7

The circle i with centre at A passes through the origin O.

It is mapped by the affine transformation onto the ellipse E.

In a new diagram demonstrate a construction to find the apices of this cllipse.
Calculate the area of the ellipse.

The vectors
(u) and < - >, u € R,
1 u
are orthogonal.

Find u, so that the images of these two vectors under the transformation o are also
orthogonal.

A dilation 8 with origin at F(2|0) maps the point P(3]0) onto the point P(4]0).

Give the equation of the mapping §.

Define a new origin and basis vectors, so that both « and # have the simplest possible
representation.

Give the equations of the two transformations in this new coordinate system.
Demonstrate that @ o 8 and § o a give the same transformation.
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Appendix 2.1 1995 National Curriculum Programme of Study

Attainment Target 2: Number and Algebra

HlLevel 1

Pupils count, order, add and subtract numbers when solving problems involving up to 10
objects. They read and write the numbers involved. Pupils recognise and make repeating
patterns, counting the number of each object in each repeat.

M Level 2

Pupils count sets of objects reliably, and use mental recall of addition and subtraction
facts to 10. They have begun to understand the place value of each digit in a number and
use this to order numbers up to 100. They choose the appropriate operation when solving
addition and subtraction problems. They identify and use halves and quarters, such as
half of a rectangle or a quarter of eight objects. They recognise sequences of numbers,
including odd and even numbers.

M Level 3

Pupils show understanding of place value in numbers up to 1000 and use this to make
approximations. They have begun to use decimal notation and to recognise negative
numbers, in contexts such as money, temperature and calculator displays. Pupils use mental
recall of addition and subtraction facts to 20 in solving problems involving larger numbers.
They use mental recall of the 2, 5 and 10 multiplication tables, and others up to 5 X35, in
solving whole-number problems involving multiplication or division, including those that
give rise to remainders. Pupils use calculator methods where numbers include several digits.
They have begun to develop mental strategies, and use them to find methods for adding and
subtracting numbers with at least two digits.

HLevel 4

Pupils use their understanding of place value to multiply and divide whole numbers by
10 or 100. In solving number problems, pupils use a range of mental and written methods
of computation with the four operations, including mental recall of multiplication facts up
to 10 % 10. They add and subtract decimals to two places. In solving problems with or
without a calculator, pupils check the reasonableness of their results by reference to their
knowledge of the context or to the size of the numbers. They recognise approximate
proportions of a whole and use simple fractions and percentages to describe these. Pupils
explore and describe number patterns, and relationships including multiple, factor and
square. They have begun to use simple formulae expressed in words. Pupils use and
interpret co-ordinates in the first quadrant.

HMLevel 5

Pupils use their understanding of place value to multiply and divide whole numbers and
decimals by 10, 100 and 1000. They order, add and subtract negative numbers in context.
They use all four operations with decimals to two places. They calculate fractional or
percentage parts of quantities and measurements, using a calculator where appropriate.
Pupils understand and use an appropriate non-calculator method for solving problems that
involve multiplying and dividing any three-digit by any two-digit number. They check their
solutions by applying inverse operations or estimating using approximations. They construct,
express in symbolic form, and use simple formulae involving one or two operations.
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HMLevel 6

Pupils order and approximate decimals when solving numerical problems and equations
such as x? = 20, using trial-and-improvement methods. Pupils are aware of which number
to consider as 100 per cent, or a whole, in problems involving comparisons, and use this
to evaluate one number as a fraction or percentage of another. They understand and use
the equivalences between fractions, decimals and percentages, and calculate using ratios
in appropriate situations. When exploring number patterns, pupils find and describe in
words the rule for the next term or nth term of a sequence where the rule is linear. They
formulate and solve linear equations with whole number coefficients. They represent
mappings expressed algebraically, interpreting general features and using graphical
representation in four quadrants where appropriate.

HLevel 7

In making estimates, pupils round to one significant figure and multiply and divide
mentally. They understand the effects of multiplying and dividing by numbers between
0 and 1. Pupils solve numerical problems involving multiplication and division with
numbers of any size, using a calculator efficiently and appropriately. They understand
and use proportional changes. Pupils find and describe in symbols the next term or
nth term of a sequence where the rule is quadratic. Pupils use algebraic and graphical
methods to solve simultaneous linear equations in two variables. They solve simple
inequalities.

HLevel 8

Pupils solve problems involving calculating with powers, roots and numbers expressed in
standard form, checking for correct order of magnitude. They choose to use fractions or
percentages to solve problems involving repeated proportional changes or the calculation
of the original quantity given the result of a proportional change. They evaluate algebraic
formulae, substituting fractions, decimals and negative numbers. They calculate one
variable, given the others, in formulae such as V = nr*h. Pupils manipulate algebraic
formulae, equations and expressions, finding common factors and multiplying two linear
expressions. They solve inequalities in two variables. Pupils sketch and interpret graphs
of linear, quadratic, cubic and reciprocal functions, and graphs that model real situations.

M Exceptional performance

Pupils understand and use rational and irrational numbers. They determine the bounds
of intervals. Pupils understand and use direct and inverse proportion. In simplifying
algebraic expressions, they use rules of indices for negative and fractional values. In
finding formulae that approximately connect data, pupils express general laws in
symbolic form. They solve problems using intersections and gradients of graphs.
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Appendix 2.2 Example of use of spurious context for teaching algebra

A Expressions

The manager of a supermarket has to check the stock
at the end of each week.

Expressions

Al

At the beginning of a week there were 740 cans
of Fizi-Cola in the supermarker.

During the week 230 cans were delivered to
the supermarket, and 410 cans were sold.

How many cans were there in the supermarket
at the end of the week?

Atthe start of a week in a hot summer there were
3800 cans in stock.
1200 were deiivered during the week and 1700 were sold.

A3

How many cans were there at the end of the week?

A4 Which of these expressions also give the number
at the end of aweek?
@ d-s+b

(@ d-b-s

(b) b-s+d
(e) s-d-b

() d-s-b
(f) b+s-d

Every week the manager has to do
the same kind of calculation.

He subtracts
the number
sold.

He adds on
the number
delivered.

He starts with
the number at the
beginning of the week.

The numbers change from week to week. They are variable.
But he does the same kind of calculation with them
every time.

We can use letters to stand for numbers which vary.

Let b stand for the number at the beginning of a week.
Let d stand for the number delivered to the supermarket.
Let s stand for the number sold.

The manager does the calculation b - d - 5.

A calculation with letters standing for numbers
is called an expression. The expression & + d - s
is the number of cans in stock at the end of a week.

(@) Does the manager get the same result if he
starts with the number at the beginning of a week.
then subtracts the number sold, then adds the number delivered?

(b) Write the expresseion for this.

EQUITVALERIT EXRFPEESSICRIS

The expressions and
always give the same result.
no matter what numbers b.d.s stand for.

They are called equivalent expressions.

A5
equivalenttob+d-s.

A6 Rajesh is given some money at the beginning of the day.

Write down as many other expressions as you can which are

He spends some on sweets, some on comics, and some on bus fares.

Let g stand for the amount he is given, in pence.
Let s stand for the amount he spends on sweets.
Let ¢ stand for the amount he spends on comics.
Let f stand for the amount he spends on fares.

(a) Write down an expression for the number of pence he has left.
(b) Now write down an many other expressions as you can which are
equivalent to the first one.
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Appendix 2.3 Example of pupil’s work in which algebraic symbols

are used to generate relationships

seneralising and formulating patterns and constraints, reasoning
in generalised arithmetic

A rich activity that encourages students to use and develop
understanding of symbols for gé&neralised arithmetic involves
looking for patterns in "windows"™ on different number grids.This
task can be done as a pre-algebra activity with younger students.
There is plenty of opportunity for older students to apply and
refine their algebraic skills. One Y 11 students was locking at 3
by 3 windows ocn a hundred square.

V2|3 |4|5({6]7]|8]9]10] Al :Lu«; copotiha comaws
trlhiztzlabislializiir1 1920 = +4+b6 =)0

B 29 | 30 26 6t =110,
E 39 | 40

4 44 | 45| 46 49 | 50 $4 +5S6 o
B 54| 55] 56 59 | 60 3y 6s =110,
P 64 | 65 | 66 69|70

_; 79 | 80 Al {m,\/nsulhmc!'\n.:urru.
8 89 | 90
_9||9z|93|94|95|96|97|9e|99 100|

She observed that her result about opposite corners appeared to
be true wherever she positicned the window. She was able to prove
this result using algebra.

J )
(fk‘."{"& .-
(@8 Q+' C\+2 l) At a '1‘,22 = /2c\ 1-22
2) &+ 2 4 0t20 = 2ax22 he
w+10 fa +1) o +172 W) arl a2 2 240 72 Sumna .

46

4‘) A+ O+ a+12 = Qa +2°2

a+20 |lo +21 | +272.

@5’ J“LSLL{’Wl:u:y S m..w\L»v ,‘.,.f ‘o wve o 1t E"’!:Jr cha Q:uuc.».l:u’-r\ cbine
v-w:ulci V\J:.'v-k _Jvr ey Aannbt c‘u. Avuvhes SJ\&C‘ -
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Appendix 2.4 Key Stage 3 — Algebra assessment item

These patterns are made with matchsticks.

ANVAVAVAVA'

1 triangle 2 triangles ‘ 3 triangles
3 matchsticks 5 matchsticks 7 matchsticks

Every pattern is made with an odd number of matchsticks.
The rule for finding the number of matchsticks in a pattern is:

2 times the number of triangles,
add 1.

(a) Jason wants to make the pattern with 9 triangles.
Use the rule to find how many matchsticks he will need.

D

.......... matchsticks

1 mark
3/4b

(b) M = number of matchsticks
T = number of triangles

Use symbols to write down the rule connecting M and T.

AN
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Appendix 2.4 Continued

(c) The rule for finding the number of triangles in a pattern is:

The number of matchsticks take away 1,
then divide by 2.

Bethan uses 11 matchsticks to make a pattern.

Use the rule to find how many triangles she has in her pattern.

A

.......... triangles

1 mark
3/4b

(d) Misa uses 35 matchsticks to make a pattern.

Use the rule to find how many triangles she has in her pattern.

ESY

.......... triangles

1 mark
3/4b
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Appendix 3.1 SMP 16-19 Mathematics A-level 1995

Section A Answer all questions.

1 (a) Write x> + 8x + 5 in completed square form. (3)
(b) Find the coordinates of the minimum point of the graph of

y = x* + 8x + 5. (1)
(¢) Hence write down the coordinates of the minimum point of

y = (x + 12)% + 8(x + 1.2). (2)

G

2 One particular LP record lasts for 24 minutes when-played at a speed of 33% revolutions
per minute.

(a) Find the number, n, of revolutions the record makes when it is played. (1)

(b) The groove on the record can be modelled by assuming that it is n concentric
circles of regularly decreasing circumference. The diameter of the outermost
circle is 29 cm and that of the innermost circle is 13 cm. Calculate the total length
of the groove using this model. (4)

)

3 The value, £V, of a particular motorcycle ¢ years after 1990 can be modelled by

V = 3500e~%1%

(a) Write down the value of the motorcycle when new in 1990, and obtain an

estimate for its value 5 years later. (3)
dv

(b) Find the value of — when ¢t = 7, and describe clearly what this number
represents. dt (5)
(8)

4 The weight of an average male child, wkg, at age m months can be modelled using the

equation
w = 35n(m + 2) + 1, {meR:0<m<24}.

Calculate the likely age of a male child of weight 10kg and find the rate at which the
child is gaining weight at this time. (6)
(6)
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5

The diagram shows a circle, centre O and radius r. Angle AOB = 6 radians.

<9

by S

The area of the triangle OAB is §r*siné.
(a) Explain why the area of the shaded segment is
172(6 — siné).

(b) When the area of the triangle OAB is twice the area of the shaded segment, show
that the value of @ is given by

§ = 1.5sin8.

(c) Using the iterative formula 6, .| = 1.5sin 6;, and #; = 1.4, calculate the value
of 6 for which the area of the triangle OAB is twice the area of the segment. Give
your answer correct to 3 decimal places.

In a crystal structure one of the planes of the crystal has equation
2x — 3y +z = 5.
An X-ray beam passes through the crystal along the line having equation

X 1 3
yl =11t} + A1l
z 2 1

Find the angle between the X-ray beam and the given plane.

(a) The rate of change of the radius (r cm) of a spherical pebble with time (¢ years), is
modelled by the differential equation
d
—(—1; = k, where k is a constant.

If initially the radius is 5cm and after 20 years it is 4 cm, solve the differential
equation and hence find an expression for r in terms of ¢.

. dr
(b) Assuming the model T = k, use the chain rule to show that the rate of loss of the

volume of the pebble is proportional to its surface area at time 1.

(Surface area of a sphere = 4=, Volume = £77°)
3

(2)

(2)

(3)
)

(8)
@

(4)

(4)
(8)
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Appendix 3.1 continued

Section B Answer all questions

8

10

(a) Describe fully the sequence of transformations that maps the graph of y = sinx®
to that of y = 5sin (x + 40)°.

(b) A sketch graph for the function g(x) is shown. ya
Draw carefully, indicating the intercepts with the
axes in each case, separate sketch graphs for the 2
functions
(i) g(2x), -

i) gl-x), 0 1\ )

(i) £7!(x)-

The function f(x) = 3x° — 11x*> — 95x + 175 has 3 linear factors.
(a) Find f(5) and use your result to explain why (x — 5) is not a factor of f(x).
(b) The function f(x) may be written in the form

f(x) = (x + 5)(ax? + bx + ©).

Find the values of a, b and ¢ and hence write f(x) as the product of its three linear
factors.

(c) Find the values of x for which f(x) > 0.

The graph of y = 2,/(x — 1) is shown in the sketch, together with the line y = 4.

Y
4 B

y=2/(x-1)
=4

=Y

0 A

(a) Find the coordinates of the points A and B.
(b) Find the exact value of the shaded area shown.

(c) Calculate the exact volume of the solid formed by rotating the shaded area
through 360° about the x axis, leaving your answer in terms of 7.

(3)

(6)
NE]

(©)
4)
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11

12

13

52

(a) Express the function 2sinx° + cosx® in the form Rsin(x + «)°, stating the
values of R and a. Using these values, write down the coordinates of the
maximum turning point on the graph of

2sinx® + cosx® for 0 < x < 90.

(b) Express 3 cos2x + sinx in terms of sinx. Hence calculate all of the values of x
between 0 and 360 which satisfy the equation

3cos2x° + sinx® = 1.

Obtain the first and second derivatives of the function e* — cosx. Hence, using the
: . 54, : N
Maclaurin Series, show that 2x + —2-x2 is a quadratic approximation for e* — cosx

around the origin.

A quadratic approximation for cos 2x is 1 — 2x, Use these two approximations to find
the approximate solution to € — cosx = cos2x in the interval O to 1.

(a) A curve is defined by the parametric equations x = Scost, y = 2sint + 1.

d
Find ay at the point on the curve where ¢t = g

(b) “Use an exact method to evaluate rxcosxdx, leaving your answer in terms of 7.
0
@ ) = ——
T ox(x+ 1)
are constants to be found.
Hence find {f(x) dx.

A B
, write f(x) in the form f(x) = — T —+—1whereA and B
X

END OF QUESTIONS

(5)

(8)
g

(10)
i)

(4)

(5)

(5)

(14)
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Appendix 3.2 Changes to the A-level syllabus

We present a summary of the extent to which new A-level syllabuses for 1996 cover those topics
in the previous A-level core which are notin the new A-level core. The analysis is presented in the
form of a table. This may conceal some detailed distinctions, but is done for casc of reference
which a more discursive treatment would not provide. Each topic is indicated by a simple Y or a
dash. showing whether or not the topic is part of the compulsory clement of the board’s syllabus,
taken by all the candidates irrespective of what award the are entercd for, or which combination of
mudules they take. In some cases a topic may be an optional part of the syllabus, but it cannot be
assumed to have been covered by all candidates. This appendix is a slightly revised version of the
one to be found in the recent LMS/IMA/RSS report.

‘Topic . TA— B |CID|E |F |G {H|I |J T:Tl
Rational functions YI{- Y- |- 1Y|-}IY}|-]Y |- "
Partial fractions YIY[Y |- {-|YIYIY |- |Y|Y "
Binomial for ixl < | - 1Y - 1-4-1-1Y{YiY |- {-
Six trigonometric functions YIiY ~ |- IYIY{Y|Y |Y Y
Sine and cosine rules Y|Y Y |- [YIY|Y]|Y Y Y
acos g + bsin g = reos(q+a) - 1Y !-1-1-1YlYlYivyl- {- "
General soln of trig equation - |~ |- }- 1YY |-1-1-1-1-
Small trig approximations - |Y - - Y t-i1-1-1-1-
Inverse trig functions - 1Y Y- Y IYLY Y Y |- (Y
Iniplicit differentiation ~ - 1YY Y (YIYIY]- |Y|Y
Parametric differentiation Y|~ |[Y|Y]Y Y]Y]Y]YIiY|Y
Normals Y{Y Y- |IY[Y[{Y |Y{Y|Y |- i
Small increments -t-t-t- - 1-1-1-1-1-1- I
J17a+x2),f 1/401-x2) A N N
Volumes of revolution = 1= 1= 1Y |- 1YY Y |Y Y |-
Vectors - 1Y |- IYIYIYIY Y- |- |-
Scalar product - 1Y |- 1Y IYiYyiylyy|- - |-
Vector equation of a line _ - 1Y - IY Y Y Y |-~ - 1|-
;:: ﬁ?m &C) ' IFS g)f&!:) " ; S&ﬁfmwulm
C N:AB G: SMP 16-19(NEAB) K. WJEC

D: NUFFIELD (OXP)  [{: UCLFS (Linear)

This table was taken from Howson, G (1996) A-Level - some considerations in Gresham Special Lecture (1996)
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Appendix 3.3 continued
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Appendix 3.4 London Examinations Pure Mathematics—1986

56

London

EXAMINATIONS

UNIVERSITY OF LONDOX EXAMINATIONS & ASSESSMENT COUNCIL

Friday 26 May 1995 — 1st Afternoon Session

Advanced Level/Advanced Supplementary

Pure Mathematics P1
(New Syllabus)

Time: 1 hour 30 minutes

Instructions to Candidates

Full marks may be obtained for answers to ALL guestions.
In the boxes on the Answer Book, write your centre number, candidate

number, the syllabus title (Pure Mathematics), syllabus number (6405),
the paper number (P1), your surname and initials, signature and date.

Information for Candidates

A booklet ‘Mathematical Formulae including Statistical Formulae and
Tables’ is provided.

In calculations you are advised to show all the steps in your working,
giving your answer at each stage.

This paper has 9 questions.
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Appendix 3.4 continued

1.

2.

Find, in degrees to 1 decimal place, the values of x which lie in the interval —180° < x < 180° and
satisfy the equation
sin 2x = —0.57.
(6 marks)

The straight line passing through the point P(2, 1) and the point O(k, 11) has gradient -2

12

(a) Find an equation of the line in terms of x and y only.
(b) Determine the value of k.

(c) Calculate the length of the line segment PQ.
(8 marks)

Show that the elimination of x from the simultaneous equations
x -2y =1,
3xy -y' =8,

non

produces the equation :
5y +3y — 8 =0.

Solve this quadratic equation and hence find the pairs (x, y) for which the simultaneous equations are
satisfied.

(10 marks)

Q
)
B

x

y=—x + 27x — 34

Fig. 1
Figure 1 shows a sketch of part of the curve with equation y = f(x) where
f(x) = —x + 27x —34.
(@) Find j f(x) dx.
The lines x = 2 and x = 4 mest the curve at points A and B as shown.

(b) Find the area of the finite region bounded by the curve and the linesx = 2, x = 4 and y = 0.

(¢) Find the area of the finite region bounded by the curve and the straight line AB.
(11 marks)
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Appendix 3.4 continued
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17 ecm 17 cm

Fig. 2

Figure 2 shows the trianglegOCD with OC = OD = 17 cm and CD = 30 cm. The mid-point of CD
is M. With centre M, a semicircular arc 4, is drawn on CD as diameter. With centre O and radius
17 cm, a circular arc 4, is drawn from C to D. The shaded region R is bounded by the arcs A4,
and A4,. Calculate, giving answers to 2 decimal places,

(a) the area of the triangle OCD,
(D) the angle COD in radians,

(c) the area of the shaded region R.
(12 marks)

The nth term of a sequence is u,, where u, = 95(§)n, n=1,2,3, ...

(a) Find the values of u, and u,.
Giving your answers to 3 significant figures, calculate

(b) the value of u,,
15
© Y u,.
n=1

(d) Find the sum to infinity of the series whose first term is 4, and whose nth term is u,.
(12 marks)

A large tank in the shape of a cuboid is to be made from 54 m? of sheet metal. The tank has a

horizontal rectangular base and no top. The height of the tank is x metres. Two of the opposite
vertical faces are squares.

(@) Show that the volume, V m?, of the tank is given by
V=18 - 10,

{(b) Given that x can vary, use differentiation to find the maximum value of V.

(¢) Justify that the value of V you have found is a maximum.
(12 marks)
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Appendix 3.4 continued

0 / \ x
Fig. 3

The function f is defined for positive real values of x by

3

fx) = 12 In x - x2.
Figure 3 shows a sketch of the curve with equation y = f(x). The curve crosses the x-axis at the
points A and B. The gradient of the curve is zero at the point C.
(a) By calculation, show that the value of x at the point A lies between 1.1 and 1.2.
The value of x at the point B lies in the interval (n, n + 1), where 7 is an integer.

(b) Determine the value of n.

(c) Show that x = 4 at the point C and hence find the greatest positive value of f(x), giving your
answer to 2 decimal places.

(d) Write down the set of values of x for which f(x) is an increasing function of x.
(14 marks)

9. The functions f and g are given by
f:x+—=3x -1, xe€R,

z
g:x+e*, xeR.

(a) Find the value of fg(4), giving your answer to 2 decimal places.
(b) Express the inverse function f™! in the form f™': x > ... .

(c) Using the same axes, sketch the graphs of the functions f and gf. Write on your sketch the value
of each function at x = 0.

(d) Find the values of x for which f~'(x) = ?Zsr—) .

(15 marks)
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Appendix 3.5
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Appendix 3.6 International Baccalaureat/A-level equivalence
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It has been agreed by HMC that Sevencaks School may convert Intemnational Baccalaureate
results mto A level terms by means of the conversion formuia printed below. Although this
table is not yet recogruzed by the DFE we believe it 10 be fair and as accurate s it can be
bearing in mind the different nature of the two examinations. This formula has been used in

" August for the last three years with HMC approval when we have submitted results to the

national press for their league tables.

HIGHER |EQUIVALENT [POINTS |SUBSID |EQUIVALENT |{POINTS

LEVEL IB |A LEVEL VALUE |LEVEL IB |A/SLEVEL |VALUE
GRADE |GRADE GRADE |GRADE

71A 10 A 5

6|A/B -9 6|A/B 45

B 8 B 4

5{B/C 7 5{B/C 3.5

C 6 C 3

D 4 D 2

4|D/E 3 4|D/E 1.5

E 2 E 1

3[(EVYN 0.5 3/(EYN | 028

2IN 0 2|N 0

Notes.

1. Each IB Diploma candidate gains points for histher three Higher level subjects and the best
one of histher Subsidiary subjects. Thus the Diploma package s regarded as the equivalent of
three A levels and one AS level in terms of workload.

2. It is in our experience more difficult to achieve a top grade in cenain iB subjeci: than in
others. A significant number of our candidates who would have gained an A grade in A level
Maths or Science manage only a 5 in Higher level [B. The same is true for bona fide students
of Modern Languages where the IB standard is kept artificially high by the large numbers of
bilingual candidates who enter for the same examination. We would be grateful if Universities
could bear these differences in mind when making conditional offers to [B candidates.

3. It should be noted that other IB schools in the UK regard this conversion table as

ungenerous to the candidate.

Richard Russell
Direcror of Studies 14/1/96
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Appendix 3.7 Example of A-level investigation

The triangular numbers are 1, 3, 6, 10 etc. i.e. Yn (n+1)
The square numbers are 1,4,9,16 etc.  ie. m”

Which numbers are both triangular and square? The first two are 1 and 36.

The structure underlying the problem is revealed by showing that it boils down to
finding the integer solutions to the equations x> — 2y* = +1. The link with this is

easy enough, but actually showing that the complete set of solutions is given by
(xa J’) = {(ans bn) n = 1323'“'}9 where a, + bn\/’5 = (1 + ‘\/E)n’

is rather more difficult. A relatively elementary treatment can be given at
undergraduate level, but even this is more ‘naturally’ understood in the context of the
group-theoretic structure of the group of units in the ring of integers of a finite

algebraic number field. The set of solutions to x* — my”> = 1 (where m is a positive
integer which is not a square) corresponds to a special case where the group is cyclic.

From the nature of the link, it follows that the nth square triagular number is
(a,h,)’, where a, + b2 = (1 + «/5) .
Using the binomial expansion

1 8) = e i (2)42) + [J)2) e (3

then gives that the nth square triangular number is

2r -2

& n : n o
Z 2" 2 , if nis even;
= \2r o 2r+1

= n = n T
D 2 . ifnis odd.
and Z(, (%) < [2r + 1)
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Major categories of awards from 14 upwards

Appendix 4.1
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Appendix 4.2 Minimum requirements of HE Courses (Lord, Wake & Williams, 1995)

Teaching and Learning Algebra pre-19

Conclusions

A

In preparation for any degree course, the greater number of mathematics conrent
groups met by a student, the greater the number of university courses for which he or
she would be appropriately prepared.

Each content group is a collection of syllabus items, for example, the content group
Number 2 consists of : (use the modulus sign; use number bases other than base 10; understand
rational and irrational numbers; calculate absolute and relative errors; use and calculate numbers
expressed in standard index form; use the laws of indices; use the laws of logarithms).

(Full descriptions of the content groups used are given on the questionnaire in
Appendix B.)

Table 7 below shows, for each degree course, the content groups ranked in
descending order of median rating. The rating indicates the proportion of the content
that is a pre-requisite for that course, ranging from 0 (none) to 3 (all). The content
groups with dark shading had a median rating £ 2, suggesting that more than half the
universities surveyed required all or most of this content, and those with light
shading had a median rating = 1 but less than 2, suggesting than more than half the
universities required some of this content. The unshaded content groups had a
median rating < 1, suggesting that the majority of the universities required none of
this content.

Biology c%ﬁ!tdritjgi%n Eg(s)r?gnﬁfs Chemistry Eng(i:riging Computing Eﬁgﬁéércﬂg M?Jr:lijrflgd_ Ig/ln(;rr:gg'lfr?lg Physics
Number 1 [ Number 1 Number 1 | Number 1 | Number 1 | Number 2 Number 1 | Number 1 | Number 1 | Number 1
Number 2 | Mensuration| Algebral Algebra 1 Algebra 1 Algebra 1 Algebra 1 Algebra 1 Algebra 1 Algebra 1
Statistics 1 Trig1 Functions 1 | Functions1 | Functions1 | Number 2 Trig1 Trig1 Trig1 Trig1

Mensuration| Algebral Applying Calculus1 | Calculusl | Algebra2 Trig 2 Trig 2 Trig 2 Trig 2
Fractions1 | Number 2 Number 2 | Number 2 | Number 2 | Statisticsl | Number 2 | Mensuration| Mensuration| Number 2
Algebral | Fractionl | Algebra2 | Algebra2 Trig 1 Trigl Functions1 | Number 2 | Number 2 | Calculusl
Algebra 2 Algebra2 | Functions2 | Statistics1 | Calculus3 Trig 2 Calculus1 | Functions1 | Calculusl | Calculus3
Statistics 3 Trig 2 Statistics 1 Trig1 Mensuration| Calculusl | Calculus3 | Kinematics | Calculus3 | Mensuration
Functions 2 | Functions2 | Mensuration | Calculus3 Trig 2 Calculus3 |[Mensuration| Calculusl | Functionsl1 | Kinematics
Calculus1 | Calculus1 Trigl Functions2 | Algebra2 |Mensuration | Kinematics [ Functions2 | Kinematics | Functions 1
Calculus3 | Calculus2 Trig 2 Mensuration | Functions2 | Functions1 | Functions 2 Vectors Functions 2 | Functions 2
Applying Statistics1 | Calculus1 Applying Calculus2 | Functions2 | Algebra2 | Calculus3 | Algebra2 Algebra 2

Prob 1 Statistics2 | Calculus2 Trig 2 Kinematics | Comp. No. | Calculus2 | Algebra2 | Calculus2 | Calculus2

Trig1 Applying Statistics2 | Calculus2 | Statistics 1 Vectors Comp. No. | Statistics1 | Calculus4 | Comp. No.

Trig 2 Prob 1 Prob 1 Prob 1 Applying Applying Calculus4 | Calculus2 Vectors Calculus 4
Calculus2 | Kinematics | Kinematics | Kinematics | Calculus4 Matrices Vectors Calculus4 | Statistics1 Vectors
Calculus 4 Prob 2 Prob 2 Calculus4 | Comp. No. Prob 1 Statistics1 | Comp. No. | Comp. No. | Statistics 1
Comp. No. | Calculus3 | Calculus3 | Statistics2 Matrices | Kinematics | Applying Applying Applying Applying

Matrices Calculus4 | Calculus4 Prob 2 Vectors Calculus 2 Matrices Prob 1 Prob 1 Matrices

Vectors Comp. No. | Comp. No. | Comp. No. |Probability 1| Calculus4 Prob 1 Matrices Matrices Prob 1
Xinematics | Matrices Matrices Matrices Statistics2 | Number 1 Prob 2 Prob 2 Prob 2 Statistics 2

Prob 2 Vectors Vectors Vectors Prob 2 Number 1 | Statistics 2 Statistics Statistics 2 Prob 2

Table 7. The ranked content group requirements for each degree course, in descending median order.
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reinstated within school mathematics.)

In GNVQ courses mathematics is expected to be taught
within the context of realistic situations related to vocational
employment. Consider ation should be given to the extent
to which it is feasible for algebraic work to be learned
within the context of vocational employment.

5.7 Implications for assessment

Current assessment practices in mathematics tend to place
more emphasis on correct answers than on the process of
solution and it is the latter which is crucial to algebra. The
dominant view seemsto be that current assessment practices
in England and Wales support pupil learning but, in the case
of algebra, the nature of thislearning is not clear.

The effects of form of assessment on learning in
mathematics needs to be investigated. More attention
should be given to syllabus design and assessment in order
to promote algebraic activity.

Key Stage tests are driven by the need to evaluate questions
in the field and the need to remove aspects of a question
which are found to be too difficult. This often resultsin the
original agebraic purpose of a question being removed
from the question. Key Stage tests and GCSE
examination questions in England and Wales are often
dressed-up within spurious contexts. The aims and
effects of these practices need to be critically examined.

5.8 Implications for the development of curriculum
materials

What pupils learn is inextricably linked to what they engage
with. When they use textbooks, the presentation of these texts
will influence the mathematics learned. This is also the case
for computer-based presentation of materials. Those involved
in the presentation of mathematics to pupils, which
includesteacher swho prepare materialsfor the classroom
either on theboard or on paper, need to reflect carefully on
the likely lear ning effects of the presentation they choose.

The fact that a textbook or CD-Rom sells well and is
popular with teachers and pupils does not imply that pupils
are learning appropriate mathematics, or that the text is
mathematically accurate or internally consistent. The
current situation is that how materials are presented is often
influenced by factors such as publisher’s interests and the
market. A mechanism has to be found which enables
feedback on what pupils learn from these materias to be
taken into account. This suggests that curriculum materials
should be subject to more critical evaluation.

5.9 Implications regarding new technologies

This was the most difficult and controversial issue for the

Teaching and Learning Algebra pre-19

working group to report on and relates to different views
about what mathematical knowledge is, which cannot be the
focus of this report.

In England and Wales many changes to the mathematics
curriculum have centred around new technologies. This is
particularly the case with calculators and graphics
calculators. This has had complex and unpredicted effects,
such as when primary pupils use ‘trial and improvement’
with a calculator to solve problems which were intended to
teach the idea of inverting arithmetical operations. Banning
the calculator from a Key Stage test will not result in pupils
changing their well-established method within the test,
athough it might change a teacher’s emphasis in training
pupils. Banning pupils from ever using calculators in school
is not sensible or practical as they are widely used outside
school.

In France, for example, pupils are allowed to use graphics
calculators in the Baccalaureat and will use graphical
methods to solve a range of problems, where previously
they may have only used algebraic methods. However, the
whole mathematics curriculum has not changed in order to
embrace graphics calculators and other computational tools
as appears to be the case in England and Wales.

Work with certain types of symbolic computer environments
can support pupilsto learn crucial algebraic ideas, for example
using symbols to represent quantitative relationships between
variables. Work with computers has aso shown that, when
engaged in solving appropriate problems, pupils can become
confident and competent in using symbols to communicate
mathematical ideas. We should try to capitalize on this
possibility.

Computer algebra systems threaten the very nature of school
mathematics because they can perform most of the routine
agebraic computations which most pupils have aways found
very difficult and alienating. As their price decreases the vast
majority of pupils will have access to such systems.

Werecommend the need for moreresearch on what pupils
can learn through using algebraic calculators.

Mathematics educators need to become more aware of the
complex relationship between learning, the problem being
solved and the toolswhich are available. They need to be more
aware of what it isthey want pupilsto learn in order to decide
on when to tell pupilsto use acomputational tool, when to tell
them to use paper and pencil and when to tell themto carry out
a process mentally. They need to communicate why they are
doing thisto the pupils themselves.

Paper technology did not preclude teachers from asking pupils
to work mentally. Computer technology should not preclude
teachers from asking pupils to work with paper. In the past,
before computers were available, novice teachers probably
learned a range of practices from expert teachers. However,
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technology is changing so rapidly that very few teachers are
expert in the area of using new technologies. This is why
teacher education is crucia. In England and Wales the current
financial constraints often inhibit even the most motivated
teachers from attending courses on the use of computers for
teaching and learning mathematics (or, indeed, on
mathematics itsdlf).

We recommend that resources are made available to
educate teachers to use new technologies to promote
lear ning of algebra and mathematics.

5.10 Implications for teacher education

Teachers need support and guidance in order to recognize
the essential nature of algebraic activity. Work needs to be
done to develop materials and courses to achieve this.

We recommend that funding is made available for in-
service teacher education. This should include courses
for teachersin primary schools, secondary schools and
FE colleges. Those involved in both pre-service and in-
service training need to engage with the issuesraised in
thisreport.

5.11 Implications for decision making

The universities have drawn attention to a problem which
needs solving. Solving the problem does not imply returning
to traditional forms of teaching but it does imply change. It
also implies critical examination of dogmatic views about
education which can emanate from both school and
university mathematics educators. Already the current
debate has provoked productive discussion and
collaboration between mathematicians, teachers, teacher
trainers and those involved in mathematics education
research. It has also provoked a less insular perspective,
examining education systems in other parts of the world.

We urge and recommend that more reflection and
analysis is built into the system. This requires time. It
also implies the need for some body with an overall
coordinating responsibility for mathematics education
from 5 to 19, including the National Curriculum,
assessment, teacher supply and training. We should not
‘experiment on the job’ with our future populations.

5.12 Tailpiece

Finally the following quote re-emphasizes the role and
power of mathematics.

To criticize mathematics for its abstraction is to
miss the point entirely. Abstraction is what makes
mathematics work. If you concentrate too closely
on too limited an application of a mathematical
idea, you rob mathematicians of their most
important tools: analogy, generality and simplicity.
Mathematics is the ultimate in technology transfer.
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