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Observed Climate Change

Warming of the climate system
IS unequivocal

Numerous long-term changes in climate observed
at continental, regional and ocean basin scales

Some aspects of climate have not been
observed to change




Global average temperature
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Consistent pattern of warming

» Surface temperatures increasing
» Tropospheric temperatures increasing
» Atmospheric water vapour content increasing
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Mid-latitude wind pc ACKS shifting poleward
More intense and longer droughts

Frequency of heavy precipitation events increasing
Extreme temperatures increasing

Tropical cyclone intensity increasing
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Drivers of Climate Change

Concentrations of CO ,, methane and nitrous oxide
have increased markedly as a result of human
activities and now far exceed pre-industrial values

Net effect of human activities
since 1750 has been one of warming




Carbon Dioxide

Fossil fuel emissions: __ o JFossil Fuel emissions
1980s:  19.8 crco, v [ A Conce\ntra“:’n e
1990s: 23.5 GtCO, lyr PR
2000-2005: 26.4 cico, /yr I I

i
Land Use Change flux: s o |
1980s: 5.1 Gtco, iyr IR oo =
1990s: 5.9 Gtco, lyr NCI Ny {

T - Jﬂ "

5o ™ ]
Atmospheric CO, (Q% T [
growth rate: E s
1960 — 2005: 1.4 ppm /yr © o
19955200551 Slppmiss © 1960 1970 1980 1990 2000

Year




Radiative forcing: change in energy balance

Used to compare different drivers of climate change
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Radiative forcing: CO, equivalents

Used to compare different drivers of climate change
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Projections of future climate

For the next two decades, a warming of about 0.2C per
decade is projected for a range of SRES emission sc  enarios.

Subsequent warming depends on how much
greenhouse gases are emitted to the atmosphere.
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Scenarios used

Based on pre-2000 literature

No additional climate change
policy (no mitigation)

Low, Medium, and High
emission scenarios.

“Physics tests” kept
atmospheric composition
constant.

Compare doing so in 2100 vs
doing so in 2000.

Results from
* 14 modelling groups
e 23 models




Projected global average warming

Higher emissions lead to more
warming later in century.
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Near term climate change

For SRES scenarios average warming in all continents will
exceed range of natural variability in next few decades.

Continental Surface Temperature Anomalies:
Observations and Projections
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See Chapter 11 for r'eglonal de'l'all

Medium (A1B) scenario
2080-2099 relative to 1980-1999

Multi-model mean warming °C |8

Multi-model mean relative
change in precipitation % [

Number of models tht project ML
increases in precipitation |—"




(Modelled) Sea level rise

Sea level rise has 3 main components:

Thermal expansion new estimates use much more detailed
models and give results slightly less
than in TAR. Causes 70 — 75% of
projected sea level rise

Glaciers and small uncertainties reduced using new data
Ice caps

Ice Sheets processes that are simulated in ice
dynamics models with confidence
remain much as in TAR

(Total) New projections are within 10% of
those in the TAR but have smaller
uncertainties.

For the parts of sea level rise explained by models,
projections for 2100 range from 0.28 to 0.43 m (9 to 16 in)




Sea level rise - limits to knowledge

Accelerated ice sheet discharge observed in recent

years implies ice processes that are not in current
models.

We can not provide a
best estimate or upper

bound for sea level rise
by 2100

Surface melt on Greenland ice sheet
descending into moulin, a vertical shaft
carrying the water to base of ice sheet.
Photo credit: Roger Braithwaite




Calculus of extremes

The distribution of weather events Climate change can involve change

around the climatic average follows in the average, or the spread

a ‘bell-shaped’ curve. around the average (standard
deviation), or both.

A shift of 1 standard
deviation makes a

1in 40 yr event into p - - - .
a1in ayyr event A shift in the distribution

of temperatures has a
much larger relative effect
at the extremes than near
the mean.

Frequency of occurrence

Departure from average




Projected changes in extremes
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Extremes will increase

* Projected increases in heavy precipitation and drought
are linked to physical processes — principally increased
absolute humidity and patterns of convergence and
divergence in atmospheric transport.

Precipitation intensity increases - even where total
precipitation decreases.

Risk of 2003 type heat wave doubled in Europe due to
current level of greenhouse gases (single study).

Extreme summer temperatures become at least 20
times more frequent by end of century (average for 3
scenarios and for multiple models).




Climate - carbon cycle feedback

Global warming reduces carbon uptake on land and ocean.

For a high emissions scenario, model estimates of
CO, growth by 2100 increase by 4% to 44% due to this
positive feedback.

Will be affected by:

» extent of managed (agriculture, biofuels) vs unmanaged
ecosystems

« changing incidence of fires

e ability of vegetation to adapt




Science uncertainties affecting policy

: Comprehensive Climate Model

I
: Carbon Cycle Climate Interactions
I
I

CONCENTRATIONS RADIATIVE CLIMATE

EMISSIONS OF RADIATIVELY
ACTIVE SPECIES FORCING RESPONSE

projected g | projected projected |

1900 2000 2100 2100 1900 2000 2100 1900 2000 2100
Year Year Year

Positive, magnitude Best estimate 3°C, likely in

uncertain range 2°C to 4.5°C
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Confidence In climate change science
has increased significantly.

Evidence for warming of the
climate system is unequivocal.

We are changing the geography
of the planet.

Reducing greenhouse gas emissions
can reduce the magnitude of change In
the longer term




