3. CO2 is already in the atmosphere naturally, so why are emissions from human activity significant?

Human activities have significantly disturbed the natural carbon cycle by extracting long-buried fossil fuels and burning them for energy, thus releasing CO2 to the atmosphere.

In nature, CO2 is exchanged continually between the atmosphere, plants and animals through photosynthesis, respiration, and decomposition, and between the atmosphere and ocean through gas exchange. A very small amount of CO2 (roughly 1% of the emission rate from fossil fuel combustion) is also emitted in volcanic eruptions. This is balanced by an equivalent amount that is removed by chemical weathering of rocks.

The CO2 level in 2012 was about 40% higher than it was in the nineteenth century. Most of this CO2 increase has taken place since 1970, about the time when global energy consumption accelerated. Measured decreases in the fraction of other forms of carbon (the isotopes 14C and 13C) and a small decrease in atmospheric oxygen concentration (observations of which have been available since 1990) show that the rise in CO2 is largely from combustion of fossil fuels (which have low 13C fractions and no 14C). Deforestation and other land use changes have also released carbon from the biosphere (living world) where it normally resides for decades to centuries. The additional CO2 from fossil fuel burning and deforestation has disturbed the balance of the carbon cycle, because the natural processes that could restore the balance are too slow compared to the rates at which human activities are adding CO2 to the atmosphere. As a result, a substantial fraction of the CO2 emitted from human activities accumulates in the atmosphere, where some of it will remain not just for decades or centuries, but for thousands of years. Comparison with the CO2 levels measured in air extracted from ice cores indicates that the current concentrations are higher than they have been in at least 800,000 years (see Question 6).

Questions and answers

Read short summary answers

1. Is the climate warming?
2. How do scientists know that recent climate change is largely caused by human activities?
3. CO2 is already in the atmosphere naturally, so why are emissions from human activity significant?
4. What role has the Sun played in climate change in recent decades?
5. What do changes in the vertical structure of atmospheric temperature – from the surface up to the stratosphere - tell us about the causes of recent climate change?
6. Climate is always changing. Why is climate change of concern now?
7. Is the current level of atmospheric CO2 concentration unprecedented in Earth’s history?
8. Is there a point at which adding more CO2 will not cause further warming?
9. Does the rate of warming vary from one decade to another?
10. Does the recent slowdown of warming mean that climate change is no longer happening?
11. If the world is warming, why are some winters and summers still very cold?
12. Why is Arctic sea ice reducing while Antarctic sea ice is not?
13. How does climate change affect the strength and frequency of floods, droughts, hurricanes and tornadoes?
14. How fast is sea level rising?
15. What is ocean acidification and why does it matter?
16. How confident are scientists that Earth will warm further over the coming century?
17. Are climate changes of a few degrees a cause for concern?
18. What are scientists doing to address key uncertainties in our understanding of the climate system?
19. Are disaster scenarios about tipping points like ‘turning off the Gulf Stream’ and release of methane from the Arctic a cause for concern?
20. If emissions of greenhouse gases were stopped, would the climate return to the conditions of 200 years ago?

Your questions

In addition to the 20 key questions answered in 'Climate Change: Evidence & Causes', we asked for your questions about the science of climate change on Google Moderator.

View all questions and our responses.

Download the answers (PDF).