References

1Newbold T. 2018. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences 285, 20180792. (https://doi.org/10.1098/rspb.2018.0792)

2Prescott GW, Williams DR, Balmford A, Green RE and Manica A. 2012 Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proceedings of the National Academy of Sciences 109, 4527–4531.

3Bartlett LJ et al. 2016 Robustness despite uncertainty: Regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography 39, 152–161. (https://doi.org/10.1111/ecog.01566)

4BirdLife International. 2016. Pinguinus impennis. The IUCN Red List of Threatened Species 2016: e.T22694856A93472944. (https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22694856A93472944.en). (Downloaded on 30 September 2020).

5Domning D. 2016 Hydrodamalis gigas. The IUCN Red List of Threatened Species 2016: e.T10303A43792683. (https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T10303A43792683.en). (Downloaded on 30 September 2020).

6BirdLife International. 2019. Ectopistes migratorius. The IUCN Red List of Threatened Species 2019: e.T22690733A152593137. (https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22690733A152593137.en). (Downloaded on 30 September 2020).

7Tittensor DP et al. 2014. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244. (https://doi.org/10.1126/science.1257484)

8WWF. 2020 Living Planet Report 2020. Bending the curve of biodiversity loss. WWF International, Gland, Switzerland.

9Tilman D, Clark M, Williams D, Kimmel K, Polasky S and Packer C. 2017 Future Threats to Biodiversity and Pathways to their Prevention. Nature 546: 73-81.

10Daily G. 1997. Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, D.C.

11Tilman D et al. 1999.  Benefits of Biodiversity. Task Force Report No. 133, Council for Agricultural Science and Technology.

12Cassman KG, Dobermann A, Walters DT, Yang H. 2003 Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–58. (http://doi.org/10.1146/annurev.energy.28.040202.122858)

13Roelfs AP. 1998 Genetic control of phenotypes in wheat stem rust. Annu. Rev. Phytopathol. 26, 351–367.

14Duvick DN. 1984 Genetic diversity in major farm crops on the farm and in reserve. Economic Botany, 38, 161–178.

15Duvick DN and Cassman KG. 1999 Post–green revolution trends in yield potential of temperate maize in the north‐central United States. Crop Science 39, 1622-1630.

16Lambin EF and Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences 108, 3465–3472. (https://doi.org/10.1073/pnas.1100480108)

17Global Change Data Lab; Our World In Data. 2020 Share of global habitable land needed for agriculture. URL https://ourworldindata.org/grapher/share-of-global-habitable-land-needed-for-agriculture-if-everyone-had-the-diet-of (accessed 30 September 2020)

18Ibid

19FAO. 2020. FaoStat. URL http://faostat3.fao.org/home/E. (accessed 20 September 2020)

20IUCN. 2020 The IUCN red list of threatened species. Version 2020-2.(accessed 20 September 2020)

21Newbold T et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. (https://doi.org/10.1038/nature14324)

22WWF. 2020 Living Planet Report 2020. Bending the curve of biodiversity loss. WWF International, Gland, Switzerland.

23Newbold T et al. 2018 Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLOS Biology 16, e2006841. (https://doi.org/10.1371/journal.pbio.2006841)

24Tilman D, Clark M, Williams D, Kimmel K, Polasky S and Packer C. 2017 Future Threats to Biodiversity and Pathways to their Prevention. Nature 546: 73-81.

25Ibid

26IUCN. 2020 The IUCN red list of threatened species. Version 2020-2. (accessed 20 September 2020)

27Tilman D, Clark M, Williams D, Kimmel K, Polasky S and Packer C. 2017 Future Threats to Biodiversity and Pathways to their Prevention. Nature 546: 73-81.

28Ibid

29Haddad NM et al. 2015 Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1, 1–9. (https://doi.org/10.1126/sciadv.1500052)

30Crooks KR et al. 2017 Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences of the United States of America 114, 7635–7640. (https://doi.org/10.1073/pnas.1705769114)

31Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL and Lovejoy TE. 2000 Rainforest fragmentation kills big trees. Nature 404, 836–836. (https://doi.org/10.1038/35009032)

32Laurance WF et al. 2002. Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology 16, 605–618. (https://doi.org/10.1046/j.1523-1739.2002.01025.x)

33Gibson L et al. 2013. Near-Complete Extinction of Native Small Mammal Fauna 25 Years After Forest Fragmentation. Science 341, 1508–1510. (https://doi.org/10.1126/science.1240495)

34Tilman D, May RM, Lehman CL and Nowak MA. 1994 Habitat destruction and the extinction debt.  Nature 371:65-66.

35Haddad NM et al. 2015 Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1, 1–9. (https://doi.org/10.1126/sciadv.1500052)

36Ibid

37FAO. 2020. FaoStat. URL http://faostat3.fao.org/home/E. (accessed 20 September 2020)

38Tilman D, Cassman KG, Matson PA, Naylor R and Polasky S. 2002 Agricultural sustainability and intensive production practices. Nature 418, 671–677. (https://doi.org/10.1038/nature01014)

39Ewers RM, Scharlemann J, Balmford A and Green R. 2009 Do increases in agricultural yield spare land for nature? Global Change Biology 15, 1716--1726.

40Stevenson JR, Villoria N, Byerlee D, Kelley T and Maredia M. 2013. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. PNAS 110, 8363–8368. (https://doi.org/10.1073/pnas.1208065110)

41Byerlee D, Stevenson J and Villoria N. 2014 Does intensification slow crop land expansion or encourage deforestation? Global Food Security 3, 92–98. (https://doi.org/10.1016/j.gfs.2014.04.001)

42Beckmann M et al. 2019 Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Global Change Biology 25, 1941–1956. (https://doi.org/10.1111/gcb.14606)

43Donald PF, Green RE and Heath MF. 2001 Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Roy. Soc. B 268, 25–29.

44Diaz RJ and Rosenberg R. 2008 Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321, 926–929. (https://doi.org/10.1126/science.1156401)

45Stehle S and Schulz R. 2015 Agricultural insecticides threaten surface waters at the global scale. PNAS 112, 5750–5755. (https://doi.org/10.1073/pnas.1500232112)

46Newbold T. 2018. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences 285, 20180792. (https://doi.org/10.1098/rspb.2018.0792)

47Lobell D, Schlenker W and Costa-Roberts J. 2011 Climate trends and global crop production since 1980. Science 333, 616-620.

48Ripple WJ et al. 2015 Collapse of the world’s largest herbivores. Science Advances 1. (https://doi.org/10.1126/sciadv.1400103)

49FAO. 2020 The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.

50Bogoni JA, Peres CA and Ferraz KMPMB. 2020 Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Scientific Reports 10, 14750. (https://doi.org/10.1038/s41598-020-72010-w)

51Alexandratos N et al. 2006 World agriculture: towards 2030/2050. Interim report. Prospects for food, nutrition, agriculture and major commodity groups.

52Alexandratos N and Bruinsma, J. 2012 World agriculture towards 2030/2050: the 2012 revision. FAO, Rome, Italy.

53Tilman D, Balzer C, Hill J and Befort BL. 2011 Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20260–20264. (https://doi.org/10.1073/pnas.1116437108)

54Bodirsky BL, Rolinski S, Biewald A, Weindl I, Popp A and Lotze-Campen H. 2015 Global Food Demand Scenarios for the 21st Century. PLOS ONE 10, e0139201. (https://doi.org/10.1371/journal.pone.0139201)

55Lambin EF and Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences 108, 3465–3472. (https://doi.org/10.1073/pnas.1100480108)

56Tilman D, Balzer C, Hill J and Befort BL. 2011 Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20260–20264. (https://doi.org/10.1073/pnas.1116437108)

57Tilman D, Clark M, Williams D, Kimmel K, Polasky S and Packer C. 2017 Future Threats to Biodiversity and Pathways to their Prevention. Nature 546: 73-81.

58United Nations, Department of Economic and Social Affairs, Population Division. 2019 World Population Prospects 2019.

59Tilman D, Balzer C, Hill J and Befort BL. 2011 Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20260–20264. (https://doi.org/10.1073/pnas.1116437108)

60Bodirsky BL, Rolinski S, Biewald A, Weindl I, Popp A and Lotze-Campen H. 2015 Global Food Demand Scenarios for the 21st Century. PLOS ONE 10, e0139201. (https://doi.org/10.1371/journal.pone.0139201)

61Tilman D, Clark M, Williams D, Kimmel K, Polasky S and Packer C. 2017 Future Threats to Biodiversity and Pathways to their Prevention. Nature 546: 73-81.

62Ibid

63Cassman KG. 1999 Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. PNAS 96, 5952–5959. (https://doi.org/10.1073/pnas.96.11.5952)

64Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N and Foley JA. 2012 Closing yield gaps through nutrient and water management. Nature 490, 254–257. (https://doi.org/10.1038/nature11420)

65van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P and Hochman Z. 2013 Yield gap analysis with local to global relevance—A review. Field Crops Research 143, 4–17. (https://doi.org/10.1016/j.fcr.2012.09.009)

66Hillocks RJ. 2014 Addressing the Yield Gap in Sub-Saharan Africa: Outlook on Agriculture. (https://doi.org/10.5367/oa.2014.0163)

67Balmford A et al. 2018 The environmental costs and benefits of high-yield farming. Nature Sustainability 1, 477–485. (https://doi.org/10.1038/s41893-018-0138-5)

68Pretty JN. 1997 The sustainable intensification of agriculture. Natural Resources Forum 21, 247–256. (https://doi.org/10.1111/j.1477-8947.1997.tb00699.x)

69Tilman D, Balzer C, Hill J and Befort BL. 2011 Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108, 20260–20264. (https://doi.org/10.1073/pnas.1116437108)

70Godfray HCJ and Garnett T. 2014 Food security and sustainable intensification. Phil. Trans. R. Soc. Lond. B 369, 1–13. (http://dx.doi.org/10.1098/rstb.2012.0273)

71Cui Z-L et al. 2018 Pursuing sustainable productivity with millions of smallholder farmers. Nature 478, 337.

72Sela S et al. 2016 Adapt-N Outperforms Grower-Selected Nitrogen Rates in Northeast and Midwestern United States Strip Trials. Agronomy Journal 108, 1726–1734. (https://doi.org/10.2134/agronj2015.0606)

73Vandermeer J. 1992 The Ecology of Intercropping. Cambridge University Press, Cambridge, UK.

74Zhang F and Li L. 2003 Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil 248: 305–312.

75Snapp SS, Blackie MJ, Gilbert RA, Benzer-Kerr R and Kanyana-Phiri GY. 2010 Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences 107: 20840–20845.

76Li C et al. 2020. Syndromes of production in intercropping impact yield gains. Nature Plants 6, 653–660. (https://doi.org/10.1038/s41477-020-0680-9)

77Khan ZR et al. 2014 Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Phil. Trans. R. Soc. B 369: 20120284. (http://dx.doi.org/10.1098/rstb.2012.0284)

78Cardinale et al. 2012 Biodiversity loss and its impact on humanity. Nature, 486, 59-67. (http://doi.org/10.1038/nature11148)

79Tilman D, Isbell F and Cowles JM. 2014 Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution and Systematics, 45, 471-493.

80Renard D and Tilman D. 2019 National food production stabilized by crop diversity. Nature 571, 257-260.

81Kiær LP, Skovgaard IM and Østergård H. 2009 Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field crops research 114, 361-373.

82Zhu Y et al. 2000 Genetic diversity and disease control in rice. Nature 406, 718-722.

83Phalan B et al. 2016. How can higher-yield farming help to spare nature? Science 351, 450-451. (DOI: 10.1126/science.aad0055)

84Ewers RM, Scharlemann J, Balmford A and Green R. 2009 Do increases in agricultural yield spare land for nature? Global Change Biology 15, 1716--1726.

85Angelsen A. 2010. Policies for reduced deforestation and their impact on agricultural production. Proceedings of the National Academy of Sciences of the United States of America 107, 19639--19644.

86Lambin EF and Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences 108, 3465–3472. (https://doi.org/10.1073/pnas.1100480108)

87Laurance WF and Balmford A. 2013 A global map for road building. Nature 495: 308-309.

88Ibid

89Tilman D and Clark M. 2014. Global diets link environmental sustainability and human health. Nature 515, 518–522. (http://doi.org/10.1038/nature13959)

90W Willett J et al. 2019 Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393: 447-492.

91Clark MA, Springmann M, Hill J and Tilman D. 2019 Multiple health and environmental impacts of foods. PNAS 116, 23357–23362. (https://doi.org/10.1073/pnas.1906908116)

92Ibid

93Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R and Meybeck A. 2011 Global Food Losses and Food Waste Section 3.2 (Study conducted for the International Congress “Save Food!” at Interpack 2011, Düsseldorf, Germany). FAO, Rural Infrastructure and Agro-Industries Division.