Skip to content
Research Fellows Directory

Markus Meissner

Professor Markus Meissner

Research Fellow


University of Glasgow

Research summary

From the press release for Periz et al., eLIFE 2017:

Toxoplasma gondii is a parasite that commonly infects cats but is also carried by other warm-blooded animals, including humans. Up to one-third of the UK population are chronically infected with the parasite, although most experience few harmful effects.

However, women who become infected during pregnancy can pass the parasite to their unborn child. This can result in serious health problems for the baby such as blindness and brain damage. People who have compromised immunity, such as individuals infected with HIV, are also at risk of serious complications owing to the reactivation of dormant parasitic cysts in the brain.

Toxoplasma parasites must actively invade host cells so they can replicate and survive. During an infection, this replication is synchronised, meaning that all parasites in the host cell replicate at the same time.

Until now it was unknown how parasites co-ordinated this tightly regulated process. The Meissner Group from the WCMP and researchers from the University of Vermont have discovered that a ‘cytoskeleton’ composed of the protein actin, within the parasite cells forms an extensive network that connects individual Toxoplasma parasites. When this protein is depleted in the parasite, not only does this network collapse, but the parasites also start to replicate asynchronously and are trapped inside the host cell.

While it is known that the protein actin readily form filaments in other organisms, they have not been seen in Toxoplasma before. Indeed, it was accepted amongst researchers that Toxoplasma doesn’t form filamentous actin. However, a novel tool was used to visualise this protein network, which is based on antibodies derived from camels.

Apart from identifying novel functions of this important molecule, the research community now has another available tool to study the role of actin in other important parasites, such as Plasmodium falciparum, the causative agent for malaria.

Grants awarded

Dissecting the asexual life cycle of the apicomplexan parasite Toxoplasma gondii

Scheme: Wolfson Research Merit Awards

Dates: May 2016 - Apr 2021

Value: £50,000

Was this page useful?
Thank you for your feedback
Thank you for your feedback. Please help us improve this page by taking our short survey.