Mothers in Science
64 ways to have it all
The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments.

This project was funded by a Rosalind Franklin Award from the Royal Society
It is well known that women are under-represented in careers in science. In academia, considerable attention has been focused on the paucity of women at lecturer level, and the even more lamentable state of affairs at more senior levels. The academic career path has a long apprenticeship. Typically there is an undergraduate degree, followed by a PhD, then some post-doctoral research contracts and research fellowships, and then finally a more stable lectureship or permanent research leader position, with promotion on up the ladder to follow.

A major crunch point for women comes at the appointment to lectureships, which are scarce, but subsequent promotion also seems to be problematic, leading to the metaphor of the leaky pipeline with the under-representation of women increasing at every career stage. Official statistics for the academic year 2005/06 show 23% of lecturers, 13% of senior lecturers and readers and just 7% of professors in science subjects are women. The figures are gradually improving, but none the less, they are not good, and much handwringing has ensued. It is easy to find analyses about why it is so hard for women to succeed in academic science. Many contributory factors have been convincingly identified. Frequent among them are the highly competitive atmosphere of research science and the difficulty in combining a demanding job with family commitments. These analyses are important. They can help to define the issues more precisely and to suggest measures to improve the situation. However, they have another, less positive effect. If aspiring women scientists are always reading about how difficult it is to succeed, is it any wonder that they opt for alternative career paths? I have often spoken to young women scientists who accept as fact that it is almost impossible to combine a career in academic science with motherhood, and if it is to be attempted at all, there are strict rules about how to do it.

These rules are part of a much wider mythology among scientists of both genders at the PhD and post-doctoral stages in their careers. The myths bubble up from the combination of two aspects of the academic science environment. First, a quick look at the numbers immediately shows that there are far fewer lectureship positions than qualified candidates to fill them. Second, the mentors of early career researchers are academic scientists who have successfully made the transition to lectureships and beyond. These people are usually extremely enthusiastic about their work (see below) and can’t imagine that anyone would want to do anything else. Indeed many of them assume that if you end up in any other career it must be because you failed to get a lectureship.

This attitude is ridiculous. There are many fulfilling and exciting careers for those with a research science training, both inside and outside academia, of which an academic lectureship/research group leader position is just one. This combination of strong competition for lectureships coupled with a prevailing attitude that they are the only job worth having has an extremely damaging effect. Superstitions about what you must do to succeed abound. In terms of motherhood, the usual idea is that if you have children before you get your lectureship you might as well forget it. This is patently untrue, however it is a widely held belief.

The myths discourage women, but I think the ‘win-a-lectureship-or-fail’ attitude is much more damaging than just that. Given the many career options available to research scientists, it creates deep and unnecessary anxiety, and men and women on average respond differently to this anxiety. Men tend to fight to avoid perceived failure, whilst women tend to sidestep to avoid the perceived need for aggressive competition. Put crudely, men are too scared to opt out, women are too scared to opt in. This leaves both genders in careers that may not be the best for them.
To solve this problem early career research scientists need to be freed to make the decisions right for them. There are clearly two parts to balancing this equation. On the one hand, all researchers must receive advice, support and encouragement to identify and work towards whatever career path they prefer. And on the other hand, the myths about the trials and tribulations of the academic career path must be dispelled. This book is a specific contribution to this latter effort.

I am not claiming that academic science is not a competitive career. It has to be. We are spending taxpayers’ and charity-givers’ money on our research projects. There is less money available than there are research ideas, so a competitive process to try to ensure that the money is spent in the best possible way is essential. This rigorous peer review of research ideas is an important part of science and keeps standards high. The job is also most certainly demanding, but it is so exciting and rewarding that most scientist relish the challenges that research brings. Most of us are constantly deeply grateful for the opportunity to contribute to scientific endeavour, finding it exceptionally fulfilling. It is for this reason that it is frustrating to watch talented women scientists turning to other careers (albeit valuable and important ones) because they think they must if they want a reasonable work-life balance.

For many of us the concept of work-life balance is rather problematic. The phrase suggests that your work has nothing to do with the rest of your life. I consider my work to be an integral part of my life that complements the other things I do, including being a mother. This will certainly not be the case for everyone, but I don’t want women to choose other options because they think it is impossible to combine a career in academic science with family life. The idea that women cannot thrive in the world of academic science, successfully combining a vocation for science with family life is simply untrue. It is not only perfectly possible, but also there are absolutely no rules about how to do it.

The aim of this book is to illustrate these points. On each page, the career path and family life of a woman research group leader in academic science are plotted on either side of a single timeline. Each woman has also provided a brief description of her research interests and of how she combined research and family life. It was not difficult to find participants for this book. Although the proportion of women in academic science is below 50%, the number of mothers enjoying these careers is substantial. The 64 women in this book are a somewhat random sample and they are presented in no particular order. If there was any method at all involved it was principally focussed on variety.

The 64 participants have taken many different routes to their current positions. Some did not start their research careers until after their children were older, some took an extensive career break while their children were young, some worked part time for substantial parts of their careers, many found excellent childcare support from their partners, their family, or professional childcare providers. Many comment that the autonomy and flexibility characteristic of academic science make it much easier to combine with motherhood than many other professions. Everyone agrees it is very hard work, very enjoyable and very fulfilling.
My group investigates the molecular mechanisms that allow plants to adapt to nutrient deficiency and salt stress. Experimental approaches range from patch clamp and enzymatic assays to microarrays and metabolomics.

My career is based on enthusiasm, determination, hard work and luck. Having twin boys was tough but minimised the number of maternity leaves and turned the lab into a heaven of peace... Pawel and I have always had an equal share in childcare and household. Being in the same job means we understand the stress and the satisfaction that comes with it, and the personal commitment that it requires.
Beth Jefferies

Research
My work explores how language and memory processes are organised in the brain. I study patients who have damage to particular brain regions. I also use a technique called transcranial magnetic stimulation to briefly disrupt the function of small areas of the cortex in healthy volunteers (see photo).

Career
When Meredith was a baby, my work as a research fellow was very flexible and I was able to stay at home with her at least one day a week. My husband also switched to part-time work: he found he really loved this role and is now her main carer.

BA, Experimental Psychology, University of Oxford

PhD, University of Bristol

Post-doc, University of Manchester

RCUK Fellowship, University of Manchester

Appointed senior lecturer, University of York

Birth of Meredith, 6 months maternity leave, returned to work 4 days a week

Married Paz

95

05

00

05
Kate Bushby

**Career**

I am a firm believer of 'anything being possible' for women in SET, but 2 things are important to combine this with a good family life. First and foremost, is a supportive and understanding partner- my husband is also a Professor so we understand the pressures we are both under. Second, is stable childcare- we have had the most fantastic nanny. I have chosen to work 80% time since Tom was born, and this has been my safety valve- I don’t think I would have been as happy without this one day to meet the children from school and just have time to catch up. Most people would not know I work part time- the other key is efficiency, but part time work is a luxury that some can’t afford.

**Research**

The neuromuscular research group is a multidisciplinary team involving clinically based and laboratory researchers. We focus on the molecular genetics of limb-girdle muscular dystrophies and related disorders. Having contributed to the identification of some of the genes underlying these heterogeneous phenotypes, the emphasis is moving towards understanding the functions of these genes and developing treatments.
Judith Armitage

Research
I have always been fascinated by the physiology of single celled organisms, particularly bacteria, and their apparent ability to make decisions. My research has concentrated on the environmental sensing mechanisms controlling their direction of movement, and more recently combining molecular genetics, biochemistry and in vivo light microscopy with structural biology, bioinformatics and mathematical modelling to develop predictive models of sensory networks at both single cell and population levels.

Career
I never really considered any career but scientific research. I met my husband while we were undergraduates and have lived with the "2 body problem" ever since. Since obtaining permanent positions we have not worked in the same city, and with the arrival of our daughters decided I would take on the primary day to day management of the family (with a day nanny when the girls were pre-school) and we would live in Oxford and John would commute. While academic life is flexible, commuting for 20 years has not been easy for John and when the girls were young going to conferences meant leaning on grandparents and friends to get them to and from school etc. On the positive side, we have exciting careers and have two resourceful and independent daughters.
Met Julian, who was studying zoology at Oxford University, Royal Society University Research Fellowship, UCL Lecturer in Electronic and Electrical Engineering, UCL Senior Lecturer Awarded Cyril Hilsum Medal by the British Liquid Crystal Society DPhil in Physics at Oxford University Senior Scientific Officer in Liquid Crystals and Displays group at RSRE Malvern Research Engineer at Thorn EMI Central Research Laboratories Seconded to RSRE Malvern to research applications of liquid crystals and then Maia to research insect behaviour Julian travelled to Holland and then Mali to research insect behaviour Julian had settled to work with the Forensic Science Service Moved to London where Julian had settled to work with the Forensic Science Service Married Ben was born and took 9 month career break Amy born, maternity leave, followed by 1 term sabbatical Nanny took maternity leave, during the sabbatical Sally Day

My research is on the application of liquid crystals in displays and for other applications. Liquid crystals are organic liquids with interesting electro-optical effects and to develop their applications means that Engineers, Physicists and Chemists have to work together. I am interested particularly in the optical properties and how to improve liquid crystal displays, as well as making other devices work, such as tunable focal length lenses and optical filters and switches for telecommunications.

Working in a University certainly offers a lot of flexibility as to when and where to work; it is standard practice for people in London to work at home some of the time. So this has worked well with children, although a full time nanny was essential with pre-school children, it meant that I could really work at home. It's not easy, as any working mum will tell you, but I wouldn't enjoy being at home all of the time. I think the children like knowing that their mum is developing new technology, but I do make sure there is time for other hobbies - like making costumes!
Marian Holness

Research
I apply concepts developed in the material sciences to rocks. I try to understand their history by examining thin rock slices under the microscope. My main interest at present is the process of solidification of molten rock under volcanoes.

Career
Both our children went to full-time nursery at the age of 4 months. I am responsible for dropping off the children at school and picking them up from the childminder at 5:30, so my working day is shorter than that of many of my colleagues. But I find the total escape from work into domestic duties provides an immensely creative environment from which my research has benefited. My first sabbatical year was spent in Cambridge due to the impossibility of re-locating the family, but we hope to spend the next one abroad when my husband is no longer Senior Tutor.
Research

My research is aimed at developing new highly volatile precursors to deposit films of materials and to investigate in detail the properties of the resulting films. The films are deposited by chemical vapour deposition and typical properties tested include gas sensors and conductivity.

Career

I waited until I had gained some funding, publications and a research group before having children. This worked well for me because I was initially spending long hours in the laboratory. Now I spend a lot of time managing my research group, writing proposals and publications and I am able to work from home sometimes. This flexibility has really helped as the commute to London, work and caring for a young family makes life very hectic!
Pat Monaghan

Research
My research centres on life history trade-offs, and how these are influenced by environmental factors. This involves studies of growth, reproduction and longevity, mainly in birds. I collaborate with molecular biologists and endocrinologists. I am also involved in conservation related research.

Career
I delayed having children until it felt right. Having children helped me prioritise my work, which then improved considerably! Field work became more difficult, but I also have interests in laboratory-based questions. Neil and I have Chairs in the same department, and share all aspects of family life. Having excellent, reliable childcare available in conveniently located nurseries made everything much easier.
Jean Beggs

Research

After developing an efficient gene cloning system for yeast cells, I became interested in RNA splicing. The mechanism and regulation of splicing in yeast is still my main focus, along with recent forays into systems biology.

Career

I have been extremely fortunate to have received Royal Society Fellowships, especially, after resigning a lectureship to return to Edinburgh with my husband. He has been extremely supportive of my career, which was vital to me. We believe in having good domestic support, nannies when the boys were young, au pairs later. We still have an au pair who helps with our dogs.
Amanda Cooper-Sarkar

Research
Somehow having worked quietly on parton distribution functions in the proton for years I got back fully into research and became a recognised world expert in this field.

Career
My daughter was very ill in her early months, so I couldn't work. I took up a tutorial position at St Hilda’s, with the idea that I could combine undergraduate teaching with childcare, soft-peddling on the research.
My research has focussed on the frustrating but fascinating problem of how to pin down the properties of the fundamental constituents of matter called quarks when we cannot study them directly. In 2003 my collaborators and I achieved a breakthrough in showing that the theory of how quarks behave could be solved numerically. This means that we can now calculate, for example, the masses of particles like the proton that are made of quarks but which can be studied experimentally and this opens the way to the accurate determination of the masses of quarks.

I was very lucky to obtain a 5-year fellowship soon after arriving in Glasgow, giving me the flexibility to combine research with motherhood. The fact that my husband is also an academic has meant that we have been able to take simultaneous sabbaticals and spend two academic years in the USA at different times. Our children have enjoyed this enormously.
Caroline Dean

Research
I became very interested in how prolonged cold triggers flowering (a process called vernalization) when I was a post-doc in California. Over the last 15 years my lab has used genetics and biochemistry to study the pathways that regulate vernalization requirement and response in Arabidopsis. These involve conserved epigenetic regulators (from plants to humans) and provide a great system to unpick mechanisms that link environmental changes with chromatin silencing.

Career
I waited until I had a research group before having children. Personally I found this a good option as experimental work is not as flexible as managing. Writing, planning etc can be done at all times of day and night. We also accepted the fact that we needed a lot of domestic/childcare help so home time meant fun with the kids and not chores. Recently, a major perk has been to take the whole family to meetings (and do a bit of exploring at the same time).
Research

My research is in theoretical and computational soft condensed matter physics, using mathematics to understand physical systems. We are interested in liquid crystals, liquids moving on microstructured surfaces and biological problems such as DNA ejection from viral capsids and bacterial swimming.

Career

I am privileged to able to combine a large family and an exciting career. Lots of things have helped: an EPSRC Fellowship when the children were small, the flexibility of academic work, and Peter and I being appointed to permanent jobs at the same university.
Athene Donald

Research
My research is in the area of soft matter physics, encompassing both synthetic and increasingly biological systems (including proteins and cells). I am particularly interested in structure-property relationships, and use a variety of characterisation tools in my group.

Career
I did not intend to be an academic, but fell in love with research when a postdoc at Cornell University (USA) and I swapped research field from metals to polymers. I was (unknowingly) pregnant when I took up my lectureship in Cambridge, and this was probably good timing as I had job security. My husband, a mathematician, became the primary carer of our children when his fellowship funding ceased and it was clear I was successfully established. But that is not always an easy option for a man, and he has not been able to return to academia.
I have had some great mentors who helped me to build my career alongside having children. My husband works from home, which has also been hugely beneficial, although he travelled a lot and rather unpredictably when our children were small. At times working part-time was challenging for developing my career but being able to work and spend time with our children when they were young was ideal for me.

Research

We investigate how the interactions of cells with their surroundings are modulated through the action of cell surface and matrix-degrading proteinases, in a number of normal and disease situations, including wound healing and diabetes.

Career
Veronica van Heyninghen

Research
Human genetics is the area that has excited me for more than three decades. From the earliest days of gene mapping my work has been aimed at understanding the ways in which mutations can disrupt function, and, at the same time, give us insight into normal biology by studying human disease and animal models.

Career
My children were born while I was still a relatively young postdoc. With a purely research post and good employer, it was possible to accommodate maternal duties and work. A domestically helpful husband, whose mother was a working scientist, has also been a useful asset. I am a fan of nursery care, allowing children to be socialised and yet not fixated on just one carer. My ambitions grew with increasing maturity, so that I could accommodate committee work, as well as research and travel, when the children were self-sufficient and I was not yet too ancient.
As a clinical academic I see patients in genetic clinics as well as doing research. The reasons for referral to a genetic clinic are very diverse and so I have identified genes for a number of genetic disorders. However, my main research interest is understanding the causes of congenital malformation.

Career

Having met Tim in Newcastle, it was a big decision for me to move to the Institute of Child Health, London. We both obtained Fellowships to work in Boston, the timing didn’t coincide perfectly but we spent six months together there immediately after we married. Tim returned to Newcastle and I to London until in 1989, on completing my MD, I joined Tim in Newcastle. I delayed starting a family until I had an NHS consultant post and both children started nursery at three months of age. Tim and I are both NHS consultants with research groups. Fortunately we seem to be able to plan around each other so that one of us is always at home for Christopher and Nicola.
Fiona Polack

Research
I always wanted to research something! I now research systems and software engineering, and particularly engineering complex systems. The work is increasingly interdisciplinary, and brings together state of the art computer science, engineering, biology, and other sciences.

Career
My career is built on luck: a PhD in the only 1980s history group using computers, running out of contracts just as an MSc opportunity arose, a workplace nursery opened, an unemployed friend with childcare experience, etc. Being settled in York helped childcare and schooling. A key player is my husband, who shares all the childcare and housework. It takes working on, the work-life balance is ok, with two original and enthusiastic children as consolation.
Research

My research is focused on understanding the microscopic properties of solids. Initially, I was a theoretical physicist who interacted closely with experimentalists, but in recent years there has been a dramatic shift as I now lead an experimental group, studying magnetic semiconductors.

Career

We delayed having our children until we were both well established in our careers; Karl who, is also a physicist, was a Research Fellow in Oxford before moving to the GEC central research labs. When our children were young we had a succession of good nannies and then graduated to au pairs when they were both at school. About the time of our move to Sheffield Karl became ill and took early retirement so he took over a lot of the child care when our daughters were in their teens. In recent years, since our daughters have become independent, Karl has come with me on various foreign trips, which have been great for both of us.
Leslie Ann Goldberg

Research
My research lies at the intersection of mathematics and computation. The research area is called "computational complexity" and the goal is to understand the inherent difficulty of computational problems. I am particularly interested in understanding the mathematics underlying algorithms for counting and for randomly sampling.

Career
My husband and I work in the same department, which has made it relatively easy to organise childcare. Instead of having a nanny, we have used after-school clubs and holiday playschemes. The type of work that we do (proving theorems, writing papers), can easily be done anywhere, at any time, and this flexibility has been helpful.
Research
My main area of interest is the evolution of diversity in pathogens, with particular reference to the infectious disease agents that are responsible for malaria, influenza and bacterial meningitis. I use simple mathematical models to generate new hypotheses regarding the processes that determine the population structure of these pathogens.

I work closely with laboratory and field scientists both to develop these hypotheses and to test them.

Career
The flexibility of a career in science has certainly allowed me to spend a lot of time with my children, particularly as I am able to do much of my work at home. Trying to maintain a career as a novelist at the same time has however been difficult, but writing is a passion that I cannot easily put aside. In both cases, it is not so much the work itself but all else that goes along with it (such as travelling to conferences) that becomes hard to accommodate.
Julia Goodfellow

Research
My research career has focused on the study of macromolecular structures using both experimental and molecular modelling methods. The biological structures I have studied include long chain sugars, the cornea, proteins and modified DNAs. Modifications of such structures alter the ability of the macromolecule to interact with other molecules and can be related to disease states.

Career
I have had a traditional academic career combining both research and teaching with administrative roles at Birkbeck, University of London. Subsequently I became Chief Executive of the Biotechnology and Biological Sciences Research Council, a non-departmental public body that provides funding for biosciences research in UK universities and in seven sponsored institutes. In 2007, I became vice-chancellor at the University of Kent. I married in 1972 after finishing my undergraduate studies. We have two children and have combined family life with both of us having careers in science. Our daughter is an undergraduate and our son is finishing his studies for a PhD.
I was already pregnant when I got my lectureship at Bristol, and started the job after maternity leave with Bethan. I worked part time for several months after each of our children was born. This, and an extra six months without teaching that the University gave me when I returned after Erin was born, gave me time to be a hands-on Mum and keep my research going. Being able to work at home, and at any time of day makes it much easier to cope with my caring responsibilities, both for the children, and for Mark who retired through ill health in 2007. We now have a parent's helper, who helps Mark with the children and the household chores after school. This way I can work full time and still have time to enjoy our family.

Research
I have studied development and differentiation throughout my career, enjoying the fantastic tools and resources available in the model plant Arabidopsis. I am increasingly interdisciplinary, most prominently as a member of the University of Bristol Centre for Complexity Sciences. This brings insights and fresh ways of thinking to our work on how cells specialise.

Career
I work full time and still have time to enjoy our family.
Helen Fielding

Research
My research uses lasers to investigate the spectroscopy and dynamics of the excited states of atoms, small molecules, organic molecules and biomolecules in the gas-phase and on metal surfaces. I am also interested in developing ways to control the photophysics and photochemistry of these systems using ultrafast laser technology.

Career
My husband is currently head of measurement research and development at LGC in Teddington and we both commute to work for about an hour, in opposite directions. We have accepted that we need a lot of childcare to cope with two careers. Personally, I am finding that having Fridays at home is the best compromise. It worked well for me having my children near the beginning of my research career when my research group was smaller and I had fewer external commitments.
My current research involves trying to understand the properties of liquids and solutions using computational modelling. One project is to compare the properties of model liquid water with properties of liquids made from models which have been modified in well-defined ways. Another current interest is in the solvent properties of ionic liquids.

Originally I was an NMR spectroscopist measuring chemical shifts and coupling constants of simple molecules, but I made the transition to a theorist and then a computational chemist partly as my interests changed and partly because it was easier to combine theory and computational work with family timetables. My most important asset has been a supportive husband who respects my abilities.
Eileen Harkin-Jones

Research
My main area of interest is in polymer processing and how processing affects structuring and properties of polymeric materials. I currently lead two large EPSRC funded consortia on polymer nanocomposites (multiscale modelling and process optimization). I am also working on the novel processing of biodegradable tissue scaffolds and hope to expand this area of my research in the coming years.

Career
A high degree of planning and organization, the support of my husband and setting ambitious goals have been the key ingredients in achieving my current academic position. I have been advised on more than one occasion that applying for the next promotion or high profile grant might be out of reach but I try to go with my gut instinct and this has always paid off. Having confidence in your own abilities is very important. No matter how important my work is however, at the end of the day it is my family that gives me the greatest enjoyment in life and this knowledge ensures that I keep any work pressures in perspective.
Research

My research is in pure mathematics, though some of the motivation for the problems I work on comes from theoretical physics. I work in algebraic geometry, mainly on classification problems, studying geometric objects called moduli spaces.

Career

While combining an academic career with bringing up three children, I have been very lucky to have had extremely supportive colleagues (as well, of course, as husband, family and other childcare support). In addition, being a mathematician may well have helped: for my research I have no need of a lab, and relatively little need of a library. Thus in principle, at least, I could do research while feeding a baby or singing lullabies to a toddler (though I am not sure that much of that happened in practice)!
Marysia Placzek

Research
My research aims to understand the differentiation of cells in a particular region of the brain, the hypothalamus. The hypothalamus mediates homeostasis: the control of the body’s internal environment. By understanding how it develops, we get clues as to how the hypothalamus functions normally, and how dysfunction in hypothalamic cells leads to wide-ranging problems, including age-related morbidities.

Career
The flexibility of academic work, and the support of colleagues have been hugely useful in allowing me to juggle my job and the demands of a fairly large family of four children. My husband and I run adjacent, but separate labs - and this gives us the chance to talk to each other, away from the chaos of home. The main reason that the juggling works for me is that I love both parts of what I do - getting huge enjoyment from the lab, and even more enjoyment from the family.
Research

I have a long-standing interest in mammalian epigenetics and disease. After a circuitous but entertaining career as a postdoctoral researcher (US and UK), I was appointed directly as a Senior Lecturer in Genetics at Cardiff University late in 2003. Maintaining a career and having a family has not been entirely straightforward but any obstacles that I have encountered have been over come by a healthy dose of stubborn determination and the generous support of my colleagues, in particular Professors Azim Surani, Mandy Fisher and the late Anne McLaren. It has also been crucial to embrace a somewhat nomadic lifestyle to pursue my research goals.

Career

Balancing my career and my family can be somewhat challenging. Relocating to Cardiff meant starting from scratch, both for myself and my young daughter. We had to build new friendships and the much needed support network for when things do not go according to plan. But things have worked out much better than I could have expected. Now we just have to learn some Welsh!
Effie Mutasa-Göttgens

Research
The goal of my research is to assist plant breeders in developing improved ‘weather-resistant’ crops. In recent years, my principle focus has been to improve our understanding of environmental and physiological control of bolting and flowering in sugar beet. In particular, we have created transgenic models to study the role of the plant hormone gibberellin during reproductive growth and bolting which, in sugar beet, marks the reproductive transition.

Career
My husband is also a career scientist - fortunatley in biomedical research which is generally better funded than plant science - this, for us, was critical in the early years when the equivalent of all my salary was spent on childcare. Without space for au pairs and local family networks, this was the only way I could keep working and not lose touch with my research. I just about managed to keep my head above water at home and work. It soon became impossible for both my husband and I to remain fully competitive - something had to give - I slowed down. Now, the children are older, my husband's career has taken off, mine is getting back on track and worth every sacrifice. I love my children to bits!
Aline Miller

Research
My research spans a wide area with particular emphasis on applying physical principles within the life-science field. The unifying theme is to relate the physics of self-assembly to functional, microstructural and mechanical properties to gain both process and product control. Of particular current interest is the development of responsive tissue engineering scaffolds.

Career
My husband works as an academic in a similar field, and this has helped enormously. He understands the nature of this job and has helped with the running of my research group while I have been on maternity leave. Between us we are managing to juggle both work and home life by working flexibly and sharing commitments equally.
Sandra Knapp

Research
My research centres around the description and documentation of plant diversity. I work mainly in the New World tropics on the nightshade family (Solanaceae) - describing new species and working out the evolutionary relationships between these organisms. My study plants include tomatoes, potatoes, aubergines, and tobacco, so there is a large people element to the science as well. My work takes place in both in the museum and in the field, and involves going to out of the way places to explore habitats and collect plants.

Career
My career has had periods where I did not work for pay, but my husband has always supported my scientific work and made it possible for me to continue to do what I like best! The Museum has also been an incredibly flexible employer - right down to helping with the children for important events when I had no childcare. James is also a field biologist, and we have often taken the children with us in the field; they say these times have been among the best in their lives, even though we were all working.
Research

My research is aimed at understanding the complex network of long-range hormonal signals that regulate shoot branching in plants. I am particularly interested in integrating gene regulatory networks with hormone transport and whole plant level effects.

Career

My career has been helped greatly by the fact that my husband is a freelance writer. Because he works from home in a very flexible way, we have been able to move easily and he has been the main carer for our children. It also worked well for me having the children during my post-doctoral years when my work was more flexible.
Susan Lanham-New

Research
I have worked in the area of nutrition and bone health across the life-cycle since 1989. Over the last decade, I have focused my research programme to address three specific areas: (i) what is the interaction between diet and sunlight exposure on vitamin D status in Caucasian and Asian populations; (ii) how might basic dietary manipulation assist the skeleton in its role of acid:base maintenance? (iii) at what level do physical activity & nutrition work synergistically within an individual’s genetic potential to optimise bone health?

Career
Several key events have significantly impacted on my career. In 1988, I moved from the South Coast of England to the North-East of Scotland, to undertake an MSc in Human Nutrition and Metabolism at the University of Aberdeen, with the tremendous help of an MRC Scholarship. This degree opened so many doors and I haven’t looked back since. I am hugely privileged to hold an academic position at a top Biosciences University. Women can successfully combine having a family and a career but you must be prepared to i) be adaptable; (ii) cope with little sleep and (iii) juggle an infinite number of balls all at the same time. But it is great, great fun and enormously rewarding.

BSc in Sports Science, 1990
MSc in Human Nutrition and Metabolism, Aberdeen, 1995
PhD funded by Nutritional Consultative Panel, 2000
Appointed Lecturer, University of Surrey, 2005
Promotion to Reader, 2008
Young Investigators Award at UK Osteoporosis Conference
Young Investigators Award at World Congress of Osteoporosis
Young Investigators Award at European Osteoporosis Conference
Nutritional Society Medal
Formation of D3TEX Ltd
Arrival of Kristabel Pamela
Arrival of Christian Stephen
Appointed Lecturer, University of Surrey
Young Investigators Award at World Congress of Osteoporosis
Formation of D3TEX Ltd
Carol Robinson

Research

My research interests are in the areas of mass spectrometry, protein folding and assembly. The introduction of electrospray mass spectrometry, enabled the analysis of individual protein molecules. Using this approach, my initial research interest has been to develop procedures through which it is possible to obtain information about the development of secondary structure during protein folding.

Career

I decided to take an 8 year career break to be at home with my children during their pre-school years. I thoroughly enjoyed this time and did not have a problem re-entering science after this break. Many women have asked me about the problems of staying out of the field for so long. However basic science training remains with you and the latest developments can soon be picked up. Nowadays, staying in touch would be much simpler with web access to journals, webcast scientific meetings etc. The most important thing is to do what feels right at the time and to make it work for you.
Georgina Mace

Research
I work on extinction processes and the determination of extinction risk. Early in my career I undertook detailed studies of individual species, including genetic analyses and population modelling. Then I developed some general principles for extinction prone species and these gradually became new rules that have now become standards for international lists of threatened species, and are increasingly used nationally too. More recently I have worked on other aspects of biodiversity assessment.

Career
I have been lucky that my work is not lab-based and I can take it with me. For the time my children were small we lived very close to my work, so I regularly did child and office work in short bursts at odd hours! My husband works as a lawyer/planning inspector so he is away for short periods but often at home, writing up case work. Once our children were all at secondary school, he took over many parental duties. A critical period for me was after Kate was born. With three small children I gave up work, but within a year I won a Pew fellowship. This allowed me to work part time and very flexibly for 3 years, and made an enormous difference.
**Research**

My research involves development and application of polarized spectroscopy techniques to study the structure and interactions of biomacromolecules. Most of this work involves cross discipline collaborations. It has evolved from being almost completely theoretical to largely experimental.

**Career**

My career, with hindsight, looks a really logical progression to gain the skills that let me do the multidisciplinary research and doctoral training that I currently do. At the time, however, it was driven by a mix of working on things that fascinated me and the need for both my husband Mark and me to get jobs. We decided that our priority was to live in the same house and pretty much took it in turns to choose where to move. We did have 5 years with a Coventry-Reading commute during which time Elisabeth was born; thankfully soon after Rowena was born Mark moved to Warwick University.
Lesley Smart

Research
My research interests have always been in the solid state - single crystal Raman, crystallography of small molecules, and latterly the solid state chemistry of ceramic pigments, new materials and catalysts for industrial processes and fuel cells.

Career
I've always felt it vital for a woman to have her own career, but juggling work with young children I found very difficult, particularly with Craig commuting to London. We shared child- and house-care as much as possible, and bought in what help we could - the crèche on campus was a godsend, as was the flexibility of an academic career. My post has had a large teaching commitment which I love, and it has been a great thrill to publish books. I was older when I had my children and it wasn't until they grew up a little that I have had more time for research again.
Research

I am a clinical child psychiatrist as well as an academic. My research looks into the causes and outcomes of child psychiatric disorders such as ADHD and depression. We have examined genes that increase risk of ADHD, examined how they affect clinical presentation and work together with environmental factors. We are also looking at adolescent depression.

Career

I am married to an academic GP and have two children. In my career I have had a lot of support from my husband. I have also been lucky in having helpful mentors. I have worked part-time when the children were younger.
Karen Halliday

Research
My research aims to establish how environmental light signals control plant growth, physiology and development. Above all I would like to understand the molecular events in cells that are triggered by light receptors in response to light cues.

Career
I have always felt strongly that work must be as rewarding as the other life components. This said I consider myself very fortunate to have a job that explores fundamental processes in biology.

To achieve balance between the workplace and home, my husband, Andrew, and I share responsibility for the care of our two young children. In this way we have both continued to develop our careers and the relative flexibility of academic work has proved very helpful in caring for our young family.
Research

My area of research has been in elucidating the role of genes in both inherited as well as sporadic disease. Diseases from the peripheral neuropathy - Charcot Marie Tooth disease to the inherited predisposition to breast and ovarian cancer. More recently I have been interested in how services for genetics can be provided including the extension of roles to nurses and genetic counsellors.

Career

My career has been facilitated by the willingness of my husband both to change the companies for which he worked, and then to set up his own businesses in the oil industry and hence having stability in Aberdeen.
Research
I study geometric objects through their topological invariants. In particular I have worked on the moduli space of surfaces. Though my main work has been motivated by questions arising from quantum field theory and string theory, the mathematics involved is very interesting and exciting in its own right.

Career
As long as I can think back, I always imagined building an (academic) career and having a large family. Mathematics not being lab-based probably made this much easier. It also worked out really well that when the children were young, I was on a fellowship which meant that I had fairly light and flexible teaching duties. Our children went to nursery and later we have had several au pairs to help with the after-school care (and to reinforce the German spoken at home).
Li Zhang

Research

My research interests are in the area of wireless broadband communications, with emphasis on developing novel signal processing techniques to improve both the bandwidth and power efficiency of the overall system.

Career

I started my career as a lecturer in August 2004. After four years, I have set up my own research group with two RAs and three PhD students. At the same time, I have also set up my family. I have a three-year-old girl and a one-year-old boy. Both of them enjoy their time at nursery from Monday to Friday and this allows me to concentrate on my work. The right balance between work and family life is achieved with the help of the flexibility of academic work and of course the help from my husband, who is also working in academia.
Janet Thornton

Research
My research has focussed on understanding biological processes through analysing protein structure, function and evolution using computational approaches. Although I enjoyed experimental work, I gained most pleasure from analysing and integrating data to characterise, rationalise and ultimately try to predict structure and function, using knowledge-based approaches. Recently at EBI, I have enjoyed the challenges presented by high throughput biology in handling the deluge of data and attempting to plan for the future. It has been a privilege to participate in the genomic revolution which has radically changed and increased our understanding of basic biology.

Career
Throughout my career, my greatest pleasure has been in working with students, post-docs and colleagues, seeing them develop and enjoying the excellent science they generate. My priorities (work-life balance) tend to be driven by necessity, with home or work taking precedence according to demands! Moving labs (from London to Oxford to London to Cambridge) has always been difficult, but ultimately rewarding and in retrospect, the right way for me.
My research is aimed at trying to understand the interplay between spacetime, the construct and what we see. Although simplistically we have this already in the form of theories or equations, in reality, the route between this formalism and what we see is more subtle. I explore the impact of extra dimensions on our four dimensional world, and also the possible ways in which gravity and particle physics interact in the early universe. I am particularly interested in ways of modifying gravity to get unexpected large scale phenomena.

Career

I have been very fortunate in having several options to choose from, and have always prioritized my home life in these choices. Unfortunately, my experience has been that family and career can only mix if your partner is extremely supportive. I think it is incredibly difficult to operate at your natural level as a woman and Mother, as you are hampered by having significantly less time and more demands on it than your male peers, but that only makes it all the more satisfying!
Penny Gowland

Research
I teach in a physics department, but my research involves developing quantitative Magnetic Resonance Imaging techniques to solve biomedical problems. I am particular interested in using ultrahigh field MRI to study how the brain responds to stimulation. I am also very interested in using MRI to learn more about gastrointestinal function and fetal development.

Career
My husband is well established and Kings College in London whilst I am settled in Nottingham. Fortunately he has been able to work at home one day a week and I am on an 80% contact. My mother retired when our first child was born and has helped with childcare 2 days a week ever since. My mother is even more useful now since I do a lot of traveling, and with Paul in London if my mother wasn’t around we would need an au pair. Sometimes Paul and I hardly see each other, but the children have good roots in Nottingham and are confident and self-sufficient. Everything works out because academic life is flexible and fun, my family and colleagues are supportive, and I have learnt not to worry about the future.
Research

My research is focused on the use of synthetic organic chemistry to probe and solve biological problems. Several projects involve the development of new synthetic strategies, including the use of biocatalysts, to construct molecules with improved biological properties.

Career

I have managed my career by being organised, having a supportive husband, good childcare and understanding children! I had my first child Rebekah, while doing postdoctoral research and before establishing an independent research career, and then Samuel in the early years of my lecturership. We both juggled full time lecturing, research, and bringing up the children and despite the hard work and long hours the relative flexibility of academic life has helped.
Parveen Yaqoob

Research
My research investigates the influence of omega-3 fatty acids on maternal and infant immunity, and probiotics on gut health and immunity.

Career
Having waited until I had an established research group before starting a family, I had to have IVF to have Aden at 38. Philip is at the peak of his career and is away a lot, so childcare is mainly my responsibility. I often have to turn down invitations to speak at conferences, but because we work in the same field, there are occasions when we are both invited to the same meeting and take Aden along with us.
Research

My research is to understand the ultimate limit in the reversal speed of a magnetic element by stroboscopic investigation of spin motion in femtosecond time domain. The method I use is femtosecond/picosecond laser microscopy and the application is to determine the maximum working frequency of magnetic storage system.

Career

Choosing between careers and families has never come to my mind. In reality, the fact that Yongbing is also an academia in York is very helpful in my career development. We always take turns in childcare for our two children, though I share a slightly higher weight. The relative flexibility of academic jobs has indeed proved very helpful in caring for my children. We are also very grateful to our parents on both sides, who came to the UK a couple of times and looked after the two grandchildren in turn over the last 5 years.
Jane Hill

Research
I examine how species (mainly butterflies) are affected by climate warming and habitat destruction. I work in Britain and the tropics. I am particularly interested in understanding how species respond to environmental changes, and the consequences of these biodiversity changes.

Career
I had Matthew once both my husband (also an ecologist) and I had permanent jobs close to one another. Until then, I had various post-doc contracts, most of which involved extensive periods of fieldwork and lots of commuting. Keith and I are both academics and so we are quite flexible in terms of childcare, and we both continue to work full-time. Fieldwork has been curtailed but I suspect this would have happened anyway as I spend more time managing my research group, and Matthew comes with us on trips to Borneo.
I became fascinated by the way metals alter the reactivity of organic molecules when I was an undergraduate. A passion to learn more has taken me on an exciting journey, highlights of which include the discovery of new chemical reactions, the creation of a wide range of new chemical compounds, and explorations of the inner workings of key catalytic processes.

Career
I have enjoyed wonderful support from Vernon, who fully understands the rewards and demands associated with academic life. From a practical point of view, we have chosen to 'invest' in top-quality childcare and domestic help, and we have ensured that our home, our work-places and our children's school are all within a short walk of each other.
Helen Osborn

Research
My research interests lie at the Chemistry-Biology interface. In particular we are developing treatments for diseases that benefit from increased selectivity compared with more traditional therapies. Diseases of interest include cancer, influenza and bacterial infections, and we are particularly interested in developing carbohydrate-based therapies.

Career
Maintaining a healthy work-family balance has always been important to me and with the support of family, colleagues and friends I have been able to combine an academic career with the joy of motherhood and family life. I find my daily life is always busy and is often challenging but I would not have it any other way.
Polina Bayvel

Research
My research is in optical communications and networks - to understand the limits to information transmission in optical fibres and build systems and networks to approach these limits. This includes the study of networks, optical pulse propagation as limited by fibre nonlinearities and dispersion, and new optical materials and devices.

Career
I have benefited hugely by having inspiring and supportive mentors, and superb students and colleagues, and this helped me build a critical mass in my research. The arrival of children has been professionally disruptive, especially as Anatoly is a busy physics professor at Queen’s University, Belfast and is frequently away. Having parents nearby, an excellent nanny, little sleep and home help have all proved key to being able to maintain the success of my lab. My boys are a great source of inspiration, joy and fulfillment.
Alison Etheridge

Research
I began my graduate work in pure mathematics, but as my career has progressed I have become increasingly interested in applications. Now, although I am still drawn to the beauty of mathematical structures, much of my work is motivated by questions in mathematical population genetics. I am particularly interested in developing models for populations that evolve in spatial continua.

Career
I had an established career before having children. This was not really a conscious decision, but it has worked very well. Both children started full-time nursery at three months and since just before Matthew was born we have had an au pair. Crucially, my husband has always been extremely supportive. We do both work rather long hours, but, because our time at work is uninterrupted, when we are at home we can focus on having fun with the kids. We really have the best of both worlds.
Alicia Hidalgo

Research

How is a brain made?

I wonder how it is that while a brain grows during development, the number of cells is controlled so as to achieve characteristic shape, volume and regional cell densities, while at the same time all the innumerable and complex axonal circuits are established. I would like to understand how structure and function of the brain come together during development and evolution.

Career

A sense of enjoyment about life, willingness to work very hard in the lab and at home, a passionate love of science and not needing much sleep, has driven me. I thought if having a family and science happen to occur at the same time in life, I would go for both. Philip and I tried as much as possible to make career choices that would help us both. We have always shared childcare and domestic duties, and have lots of fun with the kids, playing lots and doing together sports, art and holidays that everyone enjoys.
Helen Arthur

Research
I am investigating how two growth factor receptors (endoglin and Tgfbr2) regulate the form and function of the cardiovasculature in development and disease. I use mouse genetics to explore the role of these key receptors in endothelial cells and in circulating vascular repair cells.

Career
Pre-children, I worked on DNA repair and reached lecturer status at Newcastle University. I took an extensive career break when my children were young. After that, a Wellcome Trust Re-entry Fellowship helped me to re-establish a research career, in a completely new field. A 10 year career break from scientific research has given me an extra appreciation of how rewarding this job is!
I am researching the regulation of neural differentiation in embryos and embryonic stem cells. I aim to integrate different levels of analysis, from signalling pathways to cell cycle control and epigenetic modification to understand better the differentiated cell state.

Career

My partner is at sea for 3 months/year and childcare in the early years was largely my responsibility. I found post-doctoral research quite flexible and have taken a career break and worked part-time during this period. My first independent posts had high teaching demands and our move to Scotland, which was good for both our careers, allowed me to focus on research.
Katharine Reid

Research
I study the interaction of light with isolated molecules in order to determine the mechanisms by which energy can redistribute prior to fragmentation, rearrangement, or chemical reaction. I use laser light which has useful controllable properties such as intensity, frequency, pulse duration and polarization in order to study the extent to which these affect the interaction. My research is very fundamental in nature, but carries with it the tools with which chemical reactions might be steered to a controlled outcome in future.

Career
I found it very important to establish myself as a successful independent scientist before involving either a permanent partner or children in my life. This meant that when my daughter was born (when I was nearly 37) I had no qualms about making her my number 1 priority while being assured that my career, by then established, would continue. My partner and I share childcare and other domestic duties 50/50 which I think is vital. We are very lucky in that we work in the same place so don't have to deal with any commuting nightmares.
Research

I specialize in crystallization of proteins, developing a fundamental understanding of the crystallization process and harnessing this to design methodology of producing crystals for rational drug design. The research also involves crystallization on the International Space Station. Several of my research outputs have been patented and commercialized.

Career

A combination of several factors has enabled me to combine my career with raising children. Caring for the children is shared with my husband, a live-in nanny makes travel possible and the ability to work part time and gradually build up to full time have made it possible for me.
Clare Elwell

Research
I'm a Medical Physicist developing non invasive optical systems for measuring blood and oxygen levels in the human body. I lead a number of interdisciplinary teams using these systems to monitor brain damage in infants and adults undergoing intensive care, to characterise neurodevelopment in young children and to measure muscle oxygenation levels in exercising athletes.

Career
Whilst my career has always been very important to me, I never wanted to pursue it at the expense of time with my young family. For this reason I have worked part time since Julia was born. My husband has a demanding job and so we have always appreciated the need for good childcare, family support and regular holidays. I'm a firm believer that, with hard work and focus, a career in academia can provide for a rewarding work-life balance.
Research

One of the goals of research in neurobiology is to repair or regenerate neurons after damage to the brain or spinal cord. Neurons are produced by multipotent neural stem cells that can both self-renew and simultaneously generate different types of neurons. My research aims to identify the genes that specify the characteristic behaviours of these neural cells. It may then become possible to induce stem cells to become neurons at will, or induce neurons to regenerate.

Career

Jim and I did not consider having children until we had established our own research groups and my Fellowship had been renewed. We have no childcare help at home and our families live in the US and Australia. It has not been easy juggling two careers and family life, but with a supportive lab and very little sleep, it has been possible.
Jane Clarke

Research
We study the folding of families of structurally-related proteins, diverse in sequence and function. We are particularly interested in the folding, function and evolution of large multidomain proteins that have a mechanical role in the cell.

Career
When in Atlanta I couldn't teach, so I went to "back to school" and became fascinated with proteins. Consequently, just after my 40th birthday I switched careers and started a PhD. I was always the main carer for the children, but it is actually possible to do research 9-5, you just have to be incredibly organised. My message? There are many routes to a scientific career.
Dian Donnai

Research
My research is into syndromes associated with physical and developmental disabilities. My group has elucidated the genetic mechanisms underlying several disorders. We have a particular interest in mosaicism and in genotype-phenotype correlation in Williams syndrome. Close integration of my clinical and academic work is important since we aim to rapidly translate research findings into clinical practice.

Career
We have somehow managed a 2-career, 2-children partnership, not by careful planning but by taking opportunities when they arose. In earlier years our moves were decided by my husband’s career but after our children were at school the whole family have been supportive of the increasing demands of my career.
Nancy Papalopulu

Research
We are studying the function and regulation of genes that instruct simple ectodermal cells to become neurons during the formation of the embryo. These genes tend to be conserved in different species, including humans, but we are studying the frog embryo, because it is easier to observe and manipulate.

Career
I love my job and look forward to going to the lab each morning. My husband is also a scientist and he understands the pressures of academic research. We lead separate teams but we continuously juggle responsibilities between us, at work and home. I had my children at a time that was critical for my career. In the early years, we invested heavily in good childcare, which enabled me to take minimal career breaks. These days, the lab being a vibrant place full of young people, the children actually ask to come to the lab with us!
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amtmann, Anna</td>
<td>University of Glasgow</td>
<td>4</td>
</tr>
<tr>
<td>Armitage, Judith</td>
<td>University of Oxford</td>
<td>7</td>
</tr>
<tr>
<td>Arthur, Helen</td>
<td>University of Newcastle</td>
<td>59</td>
</tr>
<tr>
<td>Bayvel, Polina</td>
<td>University College London</td>
<td>56</td>
</tr>
<tr>
<td>Beggs, Jean</td>
<td>University of Edinburgh</td>
<td>12</td>
</tr>
<tr>
<td>Brand, Andrea</td>
<td>University of Cambridge</td>
<td>64</td>
</tr>
<tr>
<td>Bushby, Kate</td>
<td>University of Newcastle</td>
<td>6</td>
</tr>
<tr>
<td>Carmalt, Claire</td>
<td>University College London</td>
<td>10</td>
</tr>
<tr>
<td>Chayen, Naomi</td>
<td>Imperial College London</td>
<td>62</td>
</tr>
<tr>
<td>Clarke, Jane</td>
<td>University of Cambridge</td>
<td>65</td>
</tr>
<tr>
<td>Cooper-Sarkar, Amanda</td>
<td>University of Oxford</td>
<td>13</td>
</tr>
<tr>
<td>Davies, Christine</td>
<td>University of Glasgow</td>
<td>14</td>
</tr>
<tr>
<td>Day, Sally</td>
<td>University College London</td>
<td>8</td>
</tr>
<tr>
<td>Dean, Caroline</td>
<td>John Innes Centre, Norwich</td>
<td>15</td>
</tr>
<tr>
<td>Donald, Athene</td>
<td>University of Cambridge</td>
<td>17</td>
</tr>
<tr>
<td>Donnai, Dian</td>
<td>University of Manchester</td>
<td>66</td>
</tr>
<tr>
<td>Elwell, Clare</td>
<td>University College London</td>
<td>63</td>
</tr>
<tr>
<td>Etheridge, Alison</td>
<td>University of Oxford</td>
<td>57</td>
</tr>
<tr>
<td>Fielding, Helen</td>
<td>University College London</td>
<td>27</td>
</tr>
<tr>
<td>Gavrilovic, Jelena</td>
<td>University of East Anglia</td>
<td>18</td>
</tr>
<tr>
<td>Gehring, Gillian</td>
<td>University of Sheffield</td>
<td>22</td>
</tr>
<tr>
<td>Gibson, Sue</td>
<td>Imperial College London</td>
<td>54</td>
</tr>
<tr>
<td>Goldberg, Leslie Ann</td>
<td>University of Liverpool</td>
<td>23</td>
</tr>
<tr>
<td>Goodfellow, Julia</td>
<td>University of Kent</td>
<td>25</td>
</tr>
<tr>
<td>Goodship, Judith</td>
<td>University of Newcastle</td>
<td>20</td>
</tr>
<tr>
<td>Gowland, Penny</td>
<td>University of Nottingham</td>
<td>49</td>
</tr>
<tr>
<td>Gregory, Ruth</td>
<td>University of Durham</td>
<td>48</td>
</tr>
<tr>
<td>Grierson, Claire</td>
<td>University of Bristol</td>
<td>26</td>
</tr>
<tr>
<td>Gupta, Sunetera</td>
<td>University of Oxford</td>
<td>24</td>
</tr>
<tr>
<td>Hailes, Helen</td>
<td>University College London</td>
<td>50</td>
</tr>
<tr>
<td>Haites, Neva</td>
<td>University of Aberdeen</td>
<td>44</td>
</tr>
<tr>
<td>Halliday, Karen</td>
<td>University of Edinburgh</td>
<td>43</td>
</tr>
<tr>
<td>Harkin-Jones, Eileen</td>
<td>Queens University, Belfast</td>
<td>29</td>
</tr>
<tr>
<td>Hidalgo, Alicia</td>
<td>University of Birmingham</td>
<td>58</td>
</tr>
<tr>
<td>Hill, Jane</td>
<td>University of York</td>
<td>53</td>
</tr>
<tr>
<td>Holness, Marian</td>
<td>University of Cambridge</td>
<td>9</td>
</tr>
<tr>
<td>Jefferies, Beth</td>
<td>University of York</td>
<td>5</td>
</tr>
<tr>
<td>John, Rosalind</td>
<td>University of Cardiff</td>
<td>32</td>
</tr>
</tbody>
</table>
Kirwan, Frances ............................................................University of Oxford  30
Knapp, Sandra ........................................Natural History Museum, London  35
Lanham-New, Susan ......................................................University of Surrey  37
Leyser, Ottoline ............................................................. University of York  36
Lynden-Bell, Ruth ....................................................... Queens University Belfast / University of Cambridge  28
Mace, Georgina .................................................... Imperial College London  39
Miller, Aline .........................................................University of Manchester  34
Monaghan, Pat ................................................................. University of Glasgow  11
Mutasa-Göttgens, Effie ............................Broom's Barn, Bury St. Edmunds  33
Osborn, Helen ............................................................. University of Reading  55
Papalopulu, Nancy .................................................... University of Manchester  67
Placzek, Marysia .......................................................... University of Sheffield  31
Polack, Fiona ................................................................. University of York  21
Reid, Katharine ..................................................... University of Nottingham  61
Robinson, Carol ........................................................... University of Cambridge  38
Rodger, Alison ............................................................. University of Warwick  40
Smart, Lesley ................................................................. Open University  41
Storey, Kate ................................................................. University of Dundee  60
Thapar, Anita ................................................................. University of Cardiff  42
Thornton, Janet ...............................European Bioinformatics Institute, Cambridge  47
Tillmann, Ulrike ............................................................University of Oxford  45
van Heyningen, Veronica ...................................................... MRC Human Genetics Unit, Edinburgh  19
Wu, Jing ................................................................. University of York  52
Yaqoob, Parveen ............................................................. University of Reading  51
Yeomans, Julia ................................................................. University of Oxford  16
Zhang, Li ................................................................. University of Leeds  46