Nanostructured and molecular materials for solar energy conversion

Jenny Nelson
Department of Physics, Centre for Plastic Electronics and Grantham Institute for Climate Change,
Imperial College London
Printable photovoltaics

- Variety of materials
- Process from solution
- “One pot, one shot” active layer

- Large area
- High throughput
- Printing or coating

- Conformal
- Lightweight
- Cheap
Why print photovoltaics?

- Minimise production costs
- New product forms
- Potential for innovation in manufacturing
- Reduce carbon embedded in manufacture
Solution processable photovoltaic materials

1990- Dye sensitised

\[\eta \approx 12\% \]

1990: Dye sensitised

2001- Organic (polymer:C60)

\[\eta \approx 10\% \]

2001: Organic (polymer:C60)

2007- Organic tandem

\[\eta \approx 11\% \]

2007: Organic tandem

2010- Particle slurry CZTS

\[\eta \approx 12\% \]

2010: Particle slurry CZTS

2012- Perovskite

\[\eta \approx 16\% \]

2012: Perovskite

Other new materials and new processes...
Molecular electronic materials

- Electronic properties:
 - Excited states and charged states are **localised**
 - Electronic states are **disordered**
 - Low relative permittivity ε_r

- Charge transport is slow
- Charge pairs hard to separate
Photovoltaic energy conversion in molecular materials

Separate charges by adding a strong electron acceptor

Distributed heterojunction \Leftrightarrow charge separation over a large optical depth

Photocurrent direction provided by asymmetric contacts

Photovoltage limited by electrical gap E_{CS} (< optical gap E_g)
Materials development

![Graph showing efficiency (%) over years from 2000 to 2015.]

- **2001**: 2.5% (Schaarber et al., Adv. Mater. 2006)
- **2005**: 4.4%
- **2007**: 5.5%
- **2009**: 6% (9.2% in 2011)

Theoretical limit?

![Chemical structures and theoretical limits for HOMO and LUMO levels.]

Band Gap [eV]
- 2.8
- 2.4
- 2.0
- 1.6
- 1.2
- 0
- -3.2
- -3.4
- -3.6
- -4.0

LUMO Level Donor [eV]
- 1.0
- 9.0
- 10.0
- 11.0

Reducing gap & increasing E_{CS}

Increasing E_{CS}

Decreasing optical gap

ΔE_c

E_{CS}

E_g

E_{Voc}

HOMO

LUMO

donor

acceptor
Sources of loss in organic photovoltaic heterojunctions

How much do we pay for charge separation?

How much do we pay for charge recombination?
Probing charge separation

- Probe the energy of intermediate state using electroluminescence

- Probe the yield of charge pairs using transient spectroscopy
Probing charge separation

- Influenced by
 - Specific chemical structure and alignment
 - Molecular packing close to interface
 - Competition with other excited states

Normally > 0.3 eV

Limiting efficiency < 20%
Sources of loss in organic photovoltaic heterojunctions

How much do we pay for charge separation?

How much do we pay for charge recombination?
Nature of charge recombination

- Electronic state energies are disordered
- Recombination occurs between free and trapped charges
- Density dependent mobility and lifetime
- Intensity dependent PV performance

\[
\frac{1}{e} \nabla \cdot \mathbf{J} = G - R
\]
Example: Effect of fullerene structure on charge collection

Fullerene multi-adducts

Reduce photocurrent

Why?

Energetic disorder?

Packing disorder?

Example: Modelling effect of fullerene structure

Coarse grain

Representative structures

Electronic coupling & transport

Distinguish effects

F. Steiner, J. M. Frost et al (2014)
Where do we go from here?

- Solar electricity is abundant, sustainable, versatile and available
- To accelerate its use, cheaper materials or technologies are needed
- Nanostructured and molecular materials offer potential for radically different and cheaper solar-electric conversion technologies.
- Challenges remain for physicists, chemists and materials scientists – but none of them known to be insurmountable
Thanks to:

PhD students: Carol Olson, Dmitry Poplavskyy, Mili Eppler, P. Ravirajan, Felix Braun, Rosie Chandler, Sachetan Tuladhar, James Kirkpatrick, Jessica Benson, Joe Kwiatkowski, Thilini Ishwara, Justin Dane, Toby Ferenczi, Sam Foster, Jarvist Frost, Clare Dyer Smith, Mark Faist, Anne Guilbert, George Dibb, Sheridan Few, Davide Moia, Chris Emmott, Valerie Vaissier, Jizhong Yao, Florian Steiner, Michelle Vezie, Xingyuan Shi, Jason Rohr, Phil Sandwell, Cleaven Chia, Florent Delval

Post Docs: Dr Stelios Choulis, Dr. Amanda Chatten, Dr. Youngkyoo Kim, Dr. Roberto Pacios, Dr. Johann, Boucle, Dr. Amy Ballantyne, Dr. Mariano Campoy Quiles, Dr. Pedro Atienzar, Dr. Monika Voigt, Dr. Panagiotis Keivanidis, Dr. Tiziano Agostinelli, Dr Roderick MacKenzie, Dr. Thomas Kirchartz, Ajay Gambhir, Dr. Antonio Urbina, Dr. Andrew Telford, Dr Dorota Niedzialek, Dr Florent Deledalle,

Collaborators at Imperial
Prof Donal Bradley, Dr Piers Barnes, Dr Ned Ekins-Daukes, Prof. James Durrant, Dr. Saif Haque, Prof Iain McCulloch, Dr Marin Heeney, Dr Brian O’Regan, Dr Ji-Seon Kim, Dr Natalie Stingelin and elsewhere...